Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing forest fires with tree power

23.09.2008
Sensor system runs on electricity generated by trees

MIT researchers and colleagues are working to find out whether energy from trees can power a network of sensors to prevent spreading forest fires.

What they learn also could raise the possibility of using trees as silent sentinels along the nation's borders to detect potential threats such as smuggled radioactive materials.

The U.S. Forest Service currently predicts and tracks fires with a variety of tools, including remote automated weather stations. But these stations are expensive and sparsely distributed. Additional sensors could save trees by providing better local climate data to be used in fire prediction models and earlier alerts. However, manually recharging or replacing batteries at often very hard-to-reach locations makes this impractical and costly.

The new sensor system seeks to avoid this problem by tapping into trees as a self-sustaining power supply. Each sensor is equipped with an off-the-shelf battery that can be slowly recharged using electricity generated by the tree. A single tree doesn't generate a lot of power, but over time the "trickle charge" adds up, "just like a dripping faucet can fill a bucket over time," said Shuguang Zhang, one of the researchers on the project and the associate director of MIT's Center for Biomedical Engineering (CBE).

The system produces enough electricity to allow the temperature and humidity sensors to wirelessly transmit signals four times a day, or immediately if there's a fire. Each signal hops from one sensor to another, until it reaches an existing weather station that beams the data by satellite to a forestry command center in Boise, Idaho.

Scientists have long known that trees can produce extremely small amounts of electricity. But no one knew exactly how the energy was produced or how to take advantage of the power.

In a recent issue of the Public Library of Science ONE, Zhang and MIT colleagues report the answer. "It's really a fairly simple phenomenon: An imbalance in pH between a tree and the soil it grows in," said Andreas Mershin, a postdoctoral associate at the CBE.¬ The first author of the paper is Christopher J. Love, an MIT senior in chemistry who has been working on the project since his freshman year.

To solve the puzzle of where the voltage comes from, the team had to test a number of theories - many of them exotic. That meant a slew of experiments that showed, among other things, that the electricity was not due to a simple electrochemical redox reaction (the type that powers the 'potato batteries' common in high school science labs, http://en.wikipedia.org/wiki/Lemon_battery). The team also ruled out the source as due to coupling to underground power lines, radio waves or other electromagnetic interference.

Testing of the wireless sensor network, which is being developed by Voltree Power (http://voltreepower.com), is slated to begin in the spring on a 10-acre plot of land provided by the Forest Service.

According to Love, who with Mershin has a financial interest in Voltree, the bioenergy harvester battery charger module and sensors are ready. "We expect that we'll need to instrument four trees per acre," he said, noting that the system is designed for easy installation by unskilled workers.

"Right now we're finalizing exactly how the wireless sensor network will be configured to use the minimum amount of power," he concluded.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu
http://voltreepower.com
http://en.wikipedia.org/wiki/Lemon_battery

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>