Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prehistoric global cooling caused by CO2

02.03.2009
Ice in Antarctica suddenly appeared — in geologic terms — about 35 million years ago. For the previous 100 million years the continent had been essentially ice-free.

The question for science has been, why? What triggered glaciers to form at the South Pole?

Matthew Huber, assistant professor of earth and atmospheric sciences at Purdue University, says no evidence of global cooling during the period had been found.

"Previous evidence points paradoxically to a stable climate at the same time this event, one of the biggest climate events in Earth's history, was happening," Huber says.

However, in a paper published this week in the journal Science, a team of researchers found evidence of widespread cooling. Additional computer modeling of the cooling suggests that the cooling was caused by a reduction of greenhouse gases in the atmosphere.

Even after the continent of Antarctica had drifted to near its present location, its climate was subtropical. Then, 35.5 million years ago, ice formed on Antarctica in about 100,000 years, which is an "overnight" shift in geological terms.

"Our studies show that just over thirty-five million years ago, 'poof,' there was an ice sheet where there had been subtropical temperatures before," Huber says. "Until now we haven't had much scientific information about what happened."

Before the cooling occurred at the end of the Eocene epoch, the Earth was warm and wet, and even the north and south poles experienced subtropical climates. The dinosaurs were long gone from the planet, but there were mammals and many reptiles and amphibians. Then, as the scientists say, poof, this warm wet world, which had existed for millions of years, dramatically changed. Temperatures fell dramatically, many species of mammals as well as most reptiles and amphibians became extinct, and Antarctica was covered in ice and sea levels fell.

History records this as the beginning of the Oligocene epoch, but the cause of the cooling has been the subject of scientific discussion and debate for many years.

The research team found before the event ocean surface temperatures near present-day Antarctica averaged 77 degrees Fahrenheit (25 degrees Celsius).

Mark Pagani, professor of geology and geophysics at Yale University, says the research found that air and ocean surface temperatures dropped as much as 18 degrees Fahrenheit during the transition.

"Previous reconstructions gave no evidence of high-latitude cooling," Pagani says. "Our data demonstrate a clear temperature drop in both hemispheres during this time."

The research team determined the temperatures of the Earth millions of years ago by using temperature "proxies," or clues. In this case, the geologic detectives looked for the presence of biochemical molecules, which were present in plankton that only lived at certain temperatures. The researchers looked for the temperature proxies in seabed cores collected by drilling in deep-ocean sediments and crusts from around the world.

"Before this work we knew little about the climate during the time when this ice sheet was forming," Huber says.

Once the team identified the global cooling, the next step was to find what caused it.

To find the result, Huber used modern climate modeling tools to look at the prehistoric climate. The models were run on a cluster-type supercomputer on Purdue's campus.

"That's what climate models are good for. They can give you plausible reasons for such an event," Huber says. "We found that the likely culprit was a major drop in greenhouse gases in the atmosphere, especially CO2. From the temperature data and existing proxy records indicating a sharp drop in CO2 near the Eocene-Oligocene boundary, we are establishing a link between the sea surface temperatures and the glaciation of Antarctica."

Huber says the modeling required an unusually large computing effort. Staff at Information Technology at Purdue assisted in the computing runs.

"My simulations produced 50 terabytes of data, which is about the amount of data you could store in 100 desktop computers. This represented 8,000 years of climate simulation," Huber says.

The computation required nearly 2 million computing hours over two years on Pete, Purdue's 664-CPU Linux cluster.

"This required running these simulations for a long time, which would not have been allowed at a national supercomputing center," Huber says. "Fortunately, we had the resources here on campus, and I was able to use Purdue's Pete to do the simulation."

Additional members of the research team included David Zinniker at Yale; Robert DeConto and Mark Leckie at the University of Massachusetts, Amherst; Henk Brinkhuis at Utrecht University (Netherlands); and Sunita R. Shah and Ann Pearson at Harvard University. Zhonghui Liu, an assistant professor at the University of Hong Kong and a former postdoctoral fellow of Pagani's at Yale, was the study's lead author.

The research was supported in part by funding from the National Science Foundation.

Writer: Steve Tally, (765) 494-9809, tally@purdue.edu
Sources: Matthew Huber, (765) 494-9531, huberm@purdue.edu
Mark Pagani, (203) 432-6275, mark.pagani@yale.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Steve Tally | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>