Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potentially Harmful Chemicals Found in Forest Fire Smoke

01.05.2009
Smoldering ponderosa pine fires contain alkaloids.

Researchers have detected common plant toxins that affect human health and ecosystems in smoke from forest fires. The results from the new study also suggest that smoldering fires may produce more toxins than wildfires - a reason to keep human exposures to a minimum during controlled burns.

Finding these toxins -- known as alkaloids -- helps researchers understand how they cycle through earth and air. Smoke-related alkaloids in the environment can change aquatic and terrestrial ecosystems, as well as where and when clouds form. The study, which was of Ponderosa pines, by scientists at the Department of Energy's Pacific Northwest National Laboratory will appear June 1 in Environmental Science and Technology.

"Ponderosa pines are widespread in areas that are prone to forest fires," said PNNL physical chemist Julia Laskin, one of the coauthors. "This study shows us which molecules are in smoke so we can better understand smoke's environmental impact."

As trees and underbrush burn, billowing smoke made up of tiny particles drifts away. The tiny particles contain a variety of natural compounds released from the plant matter. Researchers have long suspected the presence of alkaloids in smoke or detected them in air during fire season, but no one had directly measured them coming off a fire. The PNNL researchers had recently developed the technology to pick out alkaloids from the background of similar molecules.

To investigate chemicals given off by fires, the team captured some smoke from test fires organized by Colorado State University researchers. These researchers were doing controlled burns of ponderosa pines, underbrush and other fuels at the Forest Service Fire Science Laboratory in Missoula, Mont.

The scientists collected smoke samples in a device that corrals small particles. Using high-resolution spectrometry instruments in EMSL, DOE's Environmental Molecular Sciences Laboratory on the PNNL campus, they then determined which molecules the smoke contained. At EMSL, the researchers used the new methods to glean highly detailed information about the smoke's composition.

The team found a wide variety of molecules. When they compared their results to other studies, they found that 70 percent of these molecules had not been previously reported in smoke.

"The research significantly expanded the previous observations," said aerosol chemist and coauthor Alexander Laskin.

In addition, 10 to 30 percent of these were alkaloids, common plant molecules that proved to be quite resistant to the high temperatures of fire. Plants often use alkaloids for protection, because they can poison other plants and animals, including humans. Alkaloids also have medicinal value (caffeine and nicotine, for example, are well-known alkaloids that aren't found in pine trees).

A large percentage of the alkaloids were those that carry biologically useful nitrogen through atmospheric, terrestrial and aquatic environments. Because of this, the results suggest smoke might be an important step in this transport. Also, the nitrogen-containing alkaloids have a basic pH, which can make cloud-forming particles less acidic, and in turn impact cloud formation that is critical to global agriculture and water supplies.

The researchers also found that the abundance of alkaloids depends on how vigorously the fire burns. Smoldering fires such as those in controlled burns produce more of the compounds than blazing fires such as those fanned by high winds. Because some plant alkaloids might be harmful, the result could affect planned fires upwind of human populations.

For future studies, the researchers are developing a method to quantify the alkaloids and related compounds in smoke to better understand their chemical composition and prevalence.

A Laskin, J Smith, and J Laskin. 2009. "Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry." Environmental Science and Technology. DOI: 10.1021/es803456n.

This work was funded by the DOE Office of Science through the Office of Basic Energy Sciences, the Office of Biological and Environmental Research, and the Science Undergraduate Laboratory Internship program.

EMSL, the Environmental Molecular Sciences Laboratory (www.emsl.pnl.gov), is a national scientific user facility sponsored by the Department of Energy's Office of Science, Biological and Environmental Research program that is located at Pacific Northwest National Laboratory. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL's technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies.

Pacific Northwest National Laboratory (www.pnl.gov) is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, Linked In and Twitter.

Mary Beckman | Newswise Science News
Further information:
http://www.pnl.gov
http://www.pnl.gov/news/release.asp?id=366

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>