Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portable imaging system will help maximize public health response to natural disasters

07.10.2008
Researchers at the Georgia Tech Research Institute (GTRI) have developed a low-cost, high-resolution imaging system that can be attached to a helicopter to create a complete and detailed picture of an area devastated by a hurricane or other natural disaster. The resulting visual information can be used to estimate the number of storm refugees and assess the need for health and humanitarian services.

Aid organizations currently don't have a quick and accurate way to determine how many people need assistance. Satellites can collect images of areas affected by a natural disaster, but there are dissemination restrictions and cloud cover can prevent collection of images.

"Without a real-time map, it's very hard to do population estimates and demographic estimates to figure out where people are, how they're moving, how they're spaced out and even how many people you have on the ground," said Benjamin Sklaver, a project officer from the Centers for Disease Control and Prevention (CDC) International Emergency and Refugee Health Branch. "This technology does not exist currently, so GTRI's imaging system is really an innovative project."

The imaging system was developed with funding from the CDC, and agency officials would like to begin using this device as soon as possible. After responding to the recent devastation caused by Hurricanes Hanna and Ike, the CDC asked GTRI to accelerate delivery of the imaging device for use during the 2008 hurricane season.

"We plan to package the system for use on Coast Guard UH-60J Black Hawk helicopters, which were among the first to fly over Haiti following Hanna's devastation," said David Price, a GTRI senior research technologist.

The imaging system – designed by Price and senior research engineer Gary Gray – is called the "Mini ModPOD," which stands for "Miniature Modular Photographic Observation Device." It consists of an off-the-shelf Canon Digital Rebel XTi digital camera, a global positioning system receiver, a small circuit board that uploads mission parameters, and an inertial measurement unit that measures the aircraft's rate of acceleration and changes in rotational attributes, including pitch, roll and yaw. The images collected from the system can be stitched together to create a complete picture of the affected area.

The research team has tested the device on several flights, selecting areas with large populations of people likely to be outdoors.

"During the first test flight, we wanted to test the clarity and resolution of the images collected during the run, and we were very pleased," said Price. "We could see tennis balls on the ground and people reading books at outdoor tables. This was sufficient detail to allow accurate counting the number of people in an area."

After the first flight, the researchers reduced the weight of the device and developed a more accurate geo-referencing capability, which allowed the physical location of the scenes shown in each photograph to be determined with precision. With the modifications made, the researchers went for a second flight test in July.

The research group selected a rectangular zone of interest and loaded the latitude and longitude coordinates of the zone into the system from a USB drive. As soon as the helicopter flew into the zone, the camera began snapping pictures. The electronics were set to measure the speed of the aircraft so that each photo overlapped 60 percent of the preceding photo, making it easier to stitch together the photos to create a complete picture. The pilot made two passes, at altitudes of 500 and 1,000 feet above ground level.

"This test flight was successful in confirming the Mini ModPOD's ability to activate the camera within the zone of interest. The resulting photos were extremely sharp and clear – they were free of any vibration or motion effects," added Price.

The photos were successfully matched to the flight data, which enabled the CDC to adjust them for geospatial reference. However, due to a software glitch, they were not overlapped as planned. The researchers made a small adjustment to the software and completed a third a third test flight in August.

"This flight resulted in images that were 60 percent overlapped, enabling CDC engineers to build a high-resolution mosaic image," noted Price. "Individuals on the ground were easily distinguishable as people separate from other objects."

The imaging system will also be available to the CDC and other agencies, such as the American Red Cross, to count people in refugee camps in order to plan for health and humanitarian services.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>