Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Port Valdez invertebrates stabilized 26 years after quake

It took 26 years for marine invertebrates living on the Port Valdez seafloor to stabilize after Alaska's Great Earthquake of 1964, according to a scientist at the University of Alaska Fairbanks.

"The earthquake, which measured 9.2 on the Richter scale, and the tsunami waves that followed, impacted every marine community in Prince William Sound," said Arny Blanchard,, a research assistant professor at the UAF School of Fisheries and Ocean Sciences. Four decades of monitoring, including samples collected last year, have confirmed that the seafloor now resembles that of an undisturbed glacial fjord.

Blanchard’s findings, along with those of Howard Feder, UAF professor emeritus, and Max Hoberg, UAF researcher, were published in the journal Marine Environmental Research. The findings shed light on how long it takes for seafloor ecosystems to recover after earthquakes.

The 1964 earthquake and resulting tsunami wreaked havoc on intertidal beaches and seafloor of Port Valdez, according to Feder, the leader of the biological component of the project from 1971 to 1990. Marine plants and animals on Port Valdez beaches were destroyed by the tsunami while the earthquake deposited massive amounts of sediment on the seafloor. This caused the whole community of bottom-dwelling marine invertebrates-- such as sea worms, snails and clams-- to change.

Some seafloor invertebrates usually found in glacial fjords like Port Valdez, such as the sea worms Terebellides stroemi and Galathowenia oculata, virtually disappeared. Other animals took advantage of the disturbance and colonized the area. One of those animals is a family of sea worms called Capitellidae. They became unusually dominant in the region for a few years. According to Blanchard, Capitellidae are known for being highly opportunistic and tolerant of disturbance.

The diversity and abundance of marine invertebrates in Port Valdez was highly variable from 1971 to 1989 compared to other glacial fjords, primarily as a result of the earthquake. Over time, the community of animals stabilized. Today, the balance of bottom-dwelling animals looks more like an undisturbed glacial fjord.

"The ecosystem was in such flux that responses by seafloor communities to regional climatic variability were masked by the recovery process," said Blanchard.

Samples collected in 2010 marked the fourth decade of sampling in Port Valdez, making it one of the longest-running research projects at the UAF School of Fisheries and Ocean Sciences. The Port Valdez study resulted in numerous scientific publications, including three books, and provided research opportunities for more than 50 undergraduate and graduate students.

The project began as an investigation of the Port Valdez ecosystem prior to the construction of the Port Valdez marine oil terminal. The study is multidisciplinary, with Blanchard currently leading the biological component. An important part of the project includes looking at the potential effects on seafloor animals of wastewater and treated ballast water discharges at the terminal. David Shaw, professor emeritus at UAF, has been the leader of the hydrocarbon chemistry component of the project since 1976. Scientists say that effects on animals on intertidal beaches and the seafloor from wastewater discharged by the terminal have been minor.

The Port Valdez project is funded by Alyeska Pipeline Service Company.

The School of Fisheries and Ocean Sciences conducts world-class marine and fisheries research, education and outreach across Alaska, the Arctic and Antarctic. 60 faculty scientists and 150 students are engaged in building knowledge about Alaska and the world's coastal and marine ecosystems. SFOS is headquartered at the University of Alaska Fairbanks, and serves the state from facilities located in Seward, Juneau, Anchorage and Kodiak.

Carin Stephens | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>