Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Population stability 'hope' in species' response to climate change

06.01.2014
Stable population trends are a prerequisite for species' range expansion, according to new research led by scientists at the University of York.

The climate in Britain has warmed over the last four decades, and many species, including butterflies, have shifted their distributions northwards. The extent of distribution changes has varied greatly among species, however, with some showing rapid expansion and others showing none at all. But this variation can be explained by taking into account the abundance trends of species.

The study by researchers in Department of Biology at York, Butterfly Conservation and the Natural Environment Research Council (NERC) Centre for Ecology and Hydrology showed that butterflies were able to expand their distributions only if they had stable (or increasing) abundance trends. It is published by Nature Climate Change.

For those species with stable or increasing population trends that have been expanding their distributions, the amount of suitable habitat available in the landscape is important. The more habitat that is available, the faster a species can expand its distribution area.

Using data on butterfly distributions and abundances, collected by members of the public since the 1970s through 'citizen science' schemes, Louise Mair, a PhD student in Biology at York, and her colleagues examined factors limiting butterfly range expansion. These data reveal that species that were previously restricted to southern England are colonising northern England and Scotland. Butterflies have extended their distributions in this way because warmer climates have made northern regions increasingly more hospitable for these temperature-constrained insects.

The study concludes that conservation management must consider existing populations and ensure that species abundances are stable or increasing in order for them to be able to respond to climate change. Increasing the amount of natural habitat in the landscape is an important conservation goal, which should increase the rate of distribution expansion for species with stable or increasing populations. However, habitat creation will not be effective for promoting range expansion by species whose populations are declining.

Population trends can be affected by many things, including local environment conditions, and in recent decades most British butterflies have undergone population declines. More effort is needed to boost abundances within species' current ranges in order to protect wildlife as the climate and landscape changes.

Louise Mair says: "My previous research revealed huge variation among butterflies in relation to their range expansion rates. It's now clear from our new research that much of this variation can be accounted for once species' population trends are known."

Professor Jane Hill at York says: "Increasing habitat availability in the landscape has been suggested as a way to help species respond to climate change, but our research shows this will only be effective for species whose abundances are stable or increasing."

Dr Richard Fox at Butterfly Conservation says: "We are grateful to the thousands of volunteer recorders who have collected these butterfly data over the past years. Their efforts and the information they've gathered are proving crucial to our understanding of the impacts of climate change on British butterflies. These latest research findings have important implications for our work to conserve threatened butterflies."

Dr Marc Botham, at the Centre for Ecology and Hydrology, says: "Our research highlights the importance of the long-running UK Butterfly Monitoring Scheme for developing effective conservation measures for British butterflies."

Chris Thomas, Professor of Conservation Biology at York, adds: "Conservation management to increase species' abundances within their ranges is a vital step in the process of helping species respond to climate changes."

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>