Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Population stability 'hope' in species' response to climate change

06.01.2014
Stable population trends are a prerequisite for species' range expansion, according to new research led by scientists at the University of York.

The climate in Britain has warmed over the last four decades, and many species, including butterflies, have shifted their distributions northwards. The extent of distribution changes has varied greatly among species, however, with some showing rapid expansion and others showing none at all. But this variation can be explained by taking into account the abundance trends of species.

The study by researchers in Department of Biology at York, Butterfly Conservation and the Natural Environment Research Council (NERC) Centre for Ecology and Hydrology showed that butterflies were able to expand their distributions only if they had stable (or increasing) abundance trends. It is published by Nature Climate Change.

For those species with stable or increasing population trends that have been expanding their distributions, the amount of suitable habitat available in the landscape is important. The more habitat that is available, the faster a species can expand its distribution area.

Using data on butterfly distributions and abundances, collected by members of the public since the 1970s through 'citizen science' schemes, Louise Mair, a PhD student in Biology at York, and her colleagues examined factors limiting butterfly range expansion. These data reveal that species that were previously restricted to southern England are colonising northern England and Scotland. Butterflies have extended their distributions in this way because warmer climates have made northern regions increasingly more hospitable for these temperature-constrained insects.

The study concludes that conservation management must consider existing populations and ensure that species abundances are stable or increasing in order for them to be able to respond to climate change. Increasing the amount of natural habitat in the landscape is an important conservation goal, which should increase the rate of distribution expansion for species with stable or increasing populations. However, habitat creation will not be effective for promoting range expansion by species whose populations are declining.

Population trends can be affected by many things, including local environment conditions, and in recent decades most British butterflies have undergone population declines. More effort is needed to boost abundances within species' current ranges in order to protect wildlife as the climate and landscape changes.

Louise Mair says: "My previous research revealed huge variation among butterflies in relation to their range expansion rates. It's now clear from our new research that much of this variation can be accounted for once species' population trends are known."

Professor Jane Hill at York says: "Increasing habitat availability in the landscape has been suggested as a way to help species respond to climate change, but our research shows this will only be effective for species whose abundances are stable or increasing."

Dr Richard Fox at Butterfly Conservation says: "We are grateful to the thousands of volunteer recorders who have collected these butterfly data over the past years. Their efforts and the information they've gathered are proving crucial to our understanding of the impacts of climate change on British butterflies. These latest research findings have important implications for our work to conserve threatened butterflies."

Dr Marc Botham, at the Centre for Ecology and Hydrology, says: "Our research highlights the importance of the long-running UK Butterfly Monitoring Scheme for developing effective conservation measures for British butterflies."

Chris Thomas, Professor of Conservation Biology at York, adds: "Conservation management to increase species' abundances within their ranges is a vital step in the process of helping species respond to climate changes."

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>