Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution on Top of the World

26.11.2010
Nearly one-fifth of the earth’s surface is comprised of mountains that play a role in the storage and distribution of fresh water, with one-tenth of the world’s population relying on that mountain snowpack as their sole source of fresh water.

Understanding the amount of pollutants in soil and snow is critical to maintaining the quality of alpine water sources, and is the subject of a study published in the Fall 2010 issue of Soil Survey Horizons, published by the Soil Science Society of America.

Researchers at the University of Southern Maine collected soil samples from Mount Everest’s Rongbuk glacier and snow samples were taken from the northeast ridge of the mountain. The samples were then analyzed for trace element concentrations, including cadmium, nickel, zinc, chromium, cobalt, arsenic, copper, manganese, mercury, vanadium, and magnesium.

The results of the study show that most trace elements were at acceptable levels. The amounts arsenic and cadmium in the snow samples, however, exceeded the U.S. Environmental Protection Agency’s drinking water standards, and the amount of arsenic in the soil samples was above the EPA’s screening guidelines.

Arsenic is associated with bladder, skin, and kidney cancer, while cadmium is linked to lung and prostate cancer through the ingestion of contaminated food and water. Both are the by-products of fossil fuel combustion.

Bill Yeo, who authored the study, suggests the levels are a result of the surrounding region’s rapid increase in industrialization. According to Yeo’s research, Asia is the leading contributor of atmospheric pollutants.

Other studies on neighboring mountains have revealed similar findings indicating the potential for multiple water sources to become contaminated. For this study, Mount Everest was selected because of its altitude and remoteness. Other research has been performed at comparable sites in Europe, Japan, Alaska, and New Zealand. Studies in Antarctica found concentrations three to four times lower than in Yeo’s analysis, illustrating that the amount of arsenic and cadmium on Everest came from human contributions.

This featured article of SSH is available for free access at www.soils.org/files/publications/soil-survey-horizons/ssh-fall-2010-feature.pdf until the next quarterly issue.

Soil Survey Horizons, www.soils.org/publications/soil-survey-horizons, is a medium for expressing ideas, problems, and philosophies concerning the study of soils in the field. Articles include research updates, soil news, history of soil survey, and personal essays from the lives of soil scientists. Soil Survey Horizons is published by the Soil Science Society of America.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org
http://www.soils.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>