Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Pollution’ May be Key Ingredient in Concrete Mixtures

07.02.2011
A researcher at Missouri University of Science and Technology is leading a study to increase the amount of fly ash used in concrete. If successful, the effort could divert millions of tons of the waste product away from ponds and landfills and reduce CO2 emissions.

Currently the nation’s power plants generate about 130 million tons of fly ash and bottom ash during the coal combustion process. Fly ash - the fine particles that rise with flue gases during combustion - are captured through filtration to reduce air pollution and are often stored at coal power plants or placed in landfills.

Adding fly ash to concrete isn’t a new concept. For more than 70 years, the waste product has been a component of concrete used to build the nation’s bridges, roads, dams and overall infrastructure. The material increases concrete’s durability, extending the service life of these structures. About 43 percent of the material is recycled as components of wallboard or concrete.

“Traditional specifications limit the amount of fly ash to 35 or 40 percent cement replacement,” says Jeffery Volz, assistant professor of civil, architectural and environmental engineering at Missouri S&T. “Recent studies have shown that higher cement replacement percentages – even up to 75 percent – can result in excellent concrete in terms of both strength and durability.”

Concrete typically has three key components: portland cement, water and aggregates like gravel and sand. During the manufacture of cement, limestone and other materials are heated to extreme temperatures, releasing tons of CO2 from both chemical reactions and the heating process. If fly ash could replace cement, it would not only reduce the amount of fly ash that ends up in ponds and landfills but CO2 emissions as well, says Volz.

High-volume fly ash is significantly more sustainable, but also can be unpredictable. The physical and chemical characteristics of the material can vary, which can change how it reacts to additives.

“A¬t all replacement rates, fly ash generally slows down the setting time and hardening rates of concrete at early ages, especially under cold weather conditions, and when less reactive fly ashes are used,” Volz says.

The disposal of fly ash isn’t without some controversy. In December 2008, 1 billion gallons of wet coal ash spilled when an earthen retaining wall of an ash pond gave way. Dozens of wells were contaminated with toxic materials, like arsenic and mercury. Soon after, the Environmental Protection Agency began reviewing regulation of the material. While the EPA supports adding fly ash to concrete or using it for soil stabilization, the agency is considering designating fly ash as a hazardous waste. The ruling would attach a stigma to the material despite solid evidence that once fly ash is added to concrete, the material is chemically altered and unable to leach the toxic materials over time.

Still, Volz acknowledges that owners may not want it in their buildings. “Construction workers might refuse to work with it,” he says. “And there’s also the issue of at what point is it not a hazardous material when used for beneficial reuse. Is it once it is added to the ready mix truck, which means it is a hazardous waste in the silo at the ready mix plant? Or is it once the concrete hardens, which means it’s a hazardous waste up to that point?”

Volz is working with the Missouri Department of Transportation to develop guidelines for the proper application of high-volume fly ash concrete in bridges, roadways, culverts, retaining walls, and other transportation-related infrastructure components.

“By nearly doubling the use of reclaimed fly ash in concrete, high-volume fly ash aligns well with MoDOT’s green initiative on recycling,” he adds.

Release No.: 214-ML/AS
Contact: Missouri S&T Public Relations, 573-341-4328, news@mst.edu

Mindy Limback | Newswise Science News
Further information:
http://www.mst.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>