Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polluting Plastic Particles Invade the Great Lakes

10.04.2013
Floating plastic debris — which helps populate the infamous “Great Pacific Garbage Patch” in the Pacific Ocean — has become a problem in the Great Lakes, the largest body of fresh water in the world. Scientists reported on the latest findings from the Great Lakes here today at the 245th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society.
“The massive production of plastic and inadequate disposal has made plastic debris an important and constant pollutant on beaches and in oceans around the world, and the Great Lakes are not an exception,” said Lorena M. Rios Mendoza, Ph.D., who spoke on the topic at the meeting. It continues here through Thursday, with 12,000 presentations on new advances in science and other topics.

Fish and birds could be harmed from accidentally eating the plastic particles, or absorbing substances that leach out into the water, Rios said. Her team knows from analyses of fish stomachs that fish are consuming the plastic particles. Fish also could pass such substances to consumers, but Rios said research on that topic is just beginning.

Much of the plastic pollution in the oceans and Great Lakes goes unnoticed by the casual observer because it is so small. In the samples Rios’ team collected in Lake Erie, 85 percent of the particles were smaller than two-tenths of an inch, and much of that was microscopic. Her group found between 1,500 and 1.7 million of these particles per square mile.

Fish, however, often mistake these bits of plastic for food. “The main problem with these plastic sizes is its accessibility to freshwater organisms that can be easily confused as natural food and the total surface area for adsorption of toxins and pseudo-estrogens increases significantly,” Rios said. It is not yet understood whether these toxins enter the food chain in harmful amounts.

Rios also pointed out that the problem of ocean plastics is quickly growing. Plastic production has increased 500 percent since 1980, and plastics now account for 80 to 90 percent of ocean pollution, according to Rios. Some of this comes from plastic bags, bottles and other trash, or from fishing lines. Another source is household products like abrasive facial cleaners or synthetic fibers shed by clothes in the washing machine. The researchers also found large numbers of plastic pellets, which are shipped around the world to be melted down and molded into everything from plastic milk jugs to parts for cars.

The plastic pollution problem may be even worse in the Great Lakes than in the oceans, Rios said. Her team found that the number of microparticles — which are more harmful to marine life because of their small size — was 24 percent higher in the Great Lakes than in samples they collected in the Southern Atlantic Ocean. With a volume equal to 1.65 million Olympic swimming pools, the Great Lakes are the largest group of freshwater lakes in the world, and this is the first time that scientists have looked there for plastics.

The problem of plastic pollution in the oceans, however, has been widely known since at least 1988, when the National Oceanic and Atmospheric Administration first described the so-called “Great Pacific Garbage Patch,” an area in the North Pacific Ocean where currents have concentrated plastics and other pollution. The patch varies in dimensions, but estimates indicate that at times it has been twice the size of the state of Texas.

The authors acknowledge funding from the University of Wisconsin-Superior.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

CONTACT:
Lorena M. Rios Mendoza, Ph.D.
University of Wisconsin-Superior
Superior, Wisc. 54880
Phone: 715-394-8205
Email: lriosmen@uwsuper.edu
Abstract
The presence of hydrophobic organic pollutants is an environmental issue because of their toxicity and persistence in the same way that plastic debris is a constant pollutant on beaches and water bodies around the planet. The production of cheap plastic items is massive. The incidence and accumulation of microplastics create significant risks to the ocean and now in the Great Lakes environment because of the known potential of these microplastics to adsorb persistent organic pollutants that can harm aquatic organisms. This is the first study that provides a basic assessment of the pollution caused by plastic debris in the Great Lakes waters. The results presented are from 4 of 22 samples collected from July 12 to July 29, 2012 on the Great Lakes as well as 13 samples collected on the South Atlantic Ocean. The plastic debris collected was classified by color, size, and chemical composition of the synthetic polymer.
Michael Bernstein
m_bernstein@acs.org
504-670-4707 (New Orleans Press Center, April 5-10)
202-872-6042
Michael Woods
m_woods@acs.org
504-670-4707 (New Orleans Press Center, April 5-10)
202-872-6293

Michael Bernstein | Newswise
Further information:
http://www.acs.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>