Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar bears can't eat geese into extinction

05.11.2010
New statistical model demonstrates that trophic mismatch feeds bears without exterminating snow geese

As the Arctic warms, a new cache of resources—snow goose eggs—may help sustain the polar bear population for the foreseeable future.

In a new study published in an early online edition of Oikos, researchers affiliated with the Museum show that even large numbers of hungry bears repeatedly raiding nests over many years would have a difficult time eliminating all of the geese because of a mismatch in the timing of bear arrival on shore and goose egg incubation.

"There have been statements in popular literature indicating that polar bears can extirpate snow geese quickly once they start to eat eggs," says Robert Rockwell, a research associate in the Division of Vertebrate Zoology at the Museum and a professor at the City University of New York. "However, there will always be the occasional mismatch in the overlap between the onshore arrival of bears and the incubation period of the geese. Even if the bears eat every egg during each year of complete 'match,' our model shows that periodic years of mismatch will provide windows of successful goose reproduction that will partially offset predation effects."

... more about:
»Arctic »Polar Day »polar bear »sea ice

In the last few years, work along the Cape Churchill Peninsula of western Hudson Bay by Rockwell and colleagues has suggested that polar bears are not as hamstrung by their environment as many biologists believe. One new nutritional option for polar bears is the bounty of goose eggs which had previously hatched into goslings that were gone by the time bears came ashore. In recent years, 'early' bears have left breaking sea ice to come ashore and consume eggs. In fact, the earlier the bears come ashore, the better: eggs are higher in nutrients when the embryo is younger.

In the new Oikos paper, Rockwell and coauthors Linda Gormezano (also affiliated with the Museum) and David Koons (a researcher at Utah State University in Logan) simulated the timing of events during the Arctic spring: the break-up of sea ice, the movement of bears onto shore, the migration of geese to the North, and the laying of eggs. Results from the computer model show that the mismatch of timing is something that both the bears and geese can use to their advantage. The timing of geese migration is primarily based on photoperiod (the amount of light in 24 hours), which will not change as quickly as polar bear movements, which are based on the melting of sea ice.

Results show that the advance in mean overlap of the two species gives an advantage to polar bears. But increased variability, also the result of global climate change, leads to an increased mismatch that is good news for snow geese.

"Mismatch is often thought to be bad, but in this case periodic mismatch is good because it keeps geese from going extinct and allows polar bears to eat," says Rockwell. "Are polar bears adaptable? Of course. This could be a nice stable system. The geese aren't going to go away, and they are a nutrient resource for the bears."

The research for this paper was supported by the Hudson Bay Project.

Kristin Phillips | EurekAlert!
Further information:
http://www.amnh.org

Further reports about: Arctic Polar Day polar bear sea ice

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>