Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar bears can't eat geese into extinction

05.11.2010
New statistical model demonstrates that trophic mismatch feeds bears without exterminating snow geese

As the Arctic warms, a new cache of resources—snow goose eggs—may help sustain the polar bear population for the foreseeable future.

In a new study published in an early online edition of Oikos, researchers affiliated with the Museum show that even large numbers of hungry bears repeatedly raiding nests over many years would have a difficult time eliminating all of the geese because of a mismatch in the timing of bear arrival on shore and goose egg incubation.

"There have been statements in popular literature indicating that polar bears can extirpate snow geese quickly once they start to eat eggs," says Robert Rockwell, a research associate in the Division of Vertebrate Zoology at the Museum and a professor at the City University of New York. "However, there will always be the occasional mismatch in the overlap between the onshore arrival of bears and the incubation period of the geese. Even if the bears eat every egg during each year of complete 'match,' our model shows that periodic years of mismatch will provide windows of successful goose reproduction that will partially offset predation effects."

... more about:
»Arctic »Polar Day »polar bear »sea ice

In the last few years, work along the Cape Churchill Peninsula of western Hudson Bay by Rockwell and colleagues has suggested that polar bears are not as hamstrung by their environment as many biologists believe. One new nutritional option for polar bears is the bounty of goose eggs which had previously hatched into goslings that were gone by the time bears came ashore. In recent years, 'early' bears have left breaking sea ice to come ashore and consume eggs. In fact, the earlier the bears come ashore, the better: eggs are higher in nutrients when the embryo is younger.

In the new Oikos paper, Rockwell and coauthors Linda Gormezano (also affiliated with the Museum) and David Koons (a researcher at Utah State University in Logan) simulated the timing of events during the Arctic spring: the break-up of sea ice, the movement of bears onto shore, the migration of geese to the North, and the laying of eggs. Results from the computer model show that the mismatch of timing is something that both the bears and geese can use to their advantage. The timing of geese migration is primarily based on photoperiod (the amount of light in 24 hours), which will not change as quickly as polar bear movements, which are based on the melting of sea ice.

Results show that the advance in mean overlap of the two species gives an advantage to polar bears. But increased variability, also the result of global climate change, leads to an increased mismatch that is good news for snow geese.

"Mismatch is often thought to be bad, but in this case periodic mismatch is good because it keeps geese from going extinct and allows polar bears to eat," says Rockwell. "Are polar bears adaptable? Of course. This could be a nice stable system. The geese aren't going to go away, and they are a nutrient resource for the bears."

The research for this paper was supported by the Hudson Bay Project.

Kristin Phillips | EurekAlert!
Further information:
http://www.amnh.org

Further reports about: Arctic Polar Day polar bear sea ice

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>