Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar bears can't eat geese into extinction

05.11.2010
New statistical model demonstrates that trophic mismatch feeds bears without exterminating snow geese

As the Arctic warms, a new cache of resources—snow goose eggs—may help sustain the polar bear population for the foreseeable future.

In a new study published in an early online edition of Oikos, researchers affiliated with the Museum show that even large numbers of hungry bears repeatedly raiding nests over many years would have a difficult time eliminating all of the geese because of a mismatch in the timing of bear arrival on shore and goose egg incubation.

"There have been statements in popular literature indicating that polar bears can extirpate snow geese quickly once they start to eat eggs," says Robert Rockwell, a research associate in the Division of Vertebrate Zoology at the Museum and a professor at the City University of New York. "However, there will always be the occasional mismatch in the overlap between the onshore arrival of bears and the incubation period of the geese. Even if the bears eat every egg during each year of complete 'match,' our model shows that periodic years of mismatch will provide windows of successful goose reproduction that will partially offset predation effects."

... more about:
»Arctic »Polar Day »polar bear »sea ice

In the last few years, work along the Cape Churchill Peninsula of western Hudson Bay by Rockwell and colleagues has suggested that polar bears are not as hamstrung by their environment as many biologists believe. One new nutritional option for polar bears is the bounty of goose eggs which had previously hatched into goslings that were gone by the time bears came ashore. In recent years, 'early' bears have left breaking sea ice to come ashore and consume eggs. In fact, the earlier the bears come ashore, the better: eggs are higher in nutrients when the embryo is younger.

In the new Oikos paper, Rockwell and coauthors Linda Gormezano (also affiliated with the Museum) and David Koons (a researcher at Utah State University in Logan) simulated the timing of events during the Arctic spring: the break-up of sea ice, the movement of bears onto shore, the migration of geese to the North, and the laying of eggs. Results from the computer model show that the mismatch of timing is something that both the bears and geese can use to their advantage. The timing of geese migration is primarily based on photoperiod (the amount of light in 24 hours), which will not change as quickly as polar bear movements, which are based on the melting of sea ice.

Results show that the advance in mean overlap of the two species gives an advantage to polar bears. But increased variability, also the result of global climate change, leads to an increased mismatch that is good news for snow geese.

"Mismatch is often thought to be bad, but in this case periodic mismatch is good because it keeps geese from going extinct and allows polar bears to eat," says Rockwell. "Are polar bears adaptable? Of course. This could be a nice stable system. The geese aren't going to go away, and they are a nutrient resource for the bears."

The research for this paper was supported by the Hudson Bay Project.

Kristin Phillips | EurekAlert!
Further information:
http://www.amnh.org

Further reports about: Arctic Polar Day polar bear sea ice

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>