Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plumes Across the Pacific Deliver Thousands of Microbial Species to West Coast

20.12.2012
A surprising number of microorganisms – more than 100 times more kinds than reported just four months ago – are leaping the biggest gap on the planet. Hitching rides in the upper troposphere, they’re making their way from Asia across the Pacific Ocean and landing in North America.

For the first time researchers have been able to gather enough biomass in the form of DNA to apply molecular methods to samples from two large dust plumes originating in Asia in the spring of 2011. The scientists detected more than 2,100 unique species compared to only 18 found in the very same plumes using traditional methods of culturing, results they published in July.

"The long-range transport and surprising level of species richness in the upper atmosphere overturns traditional paradigms in aerobiology," says David J. Smith, who recently earned his doctorate at the University of Washington in biology and astrobiology. He’s lead author of a paper in the current issue of the journal Applied and Environmental Microbiology.

"It’s a small world. Global wind circulation can move Earth’s smallest types of life to just about anywhere," Smith said.

It’s been estimated that about 7.1 million tons (64 teragrams) of aerosols – dust, pollutants and other atmospheric particles, including microorganisms – cross the Pacific each year. The aerosols are carried by wind storms into the upper reaches of the troposphere. The troposphere, the layer of air closest to earth up to about 11 miles (18 kilometers), is where almost all our weather occurs.

Co-author Daniel Jaffe, professor at UW Bothell, has previously documented especially large plumes of aerosols in the troposphere making the trans-Pacific trip in seven to 10 days. The recent findings are based on two such plumes, one in April and the other in May of 2011, detected at Mount Bachelor in the Cascade Mountains of central Oregon.

Most of the microorganisms – about half were bacterial and the other half fungal – originated from soils and were either dead on arrival or harmless to humans. A few fungal species have been associated previously with crop wilt but scientists had no way of determining if any crops were affected during either plume event.

Most of the species in the plumes can be found in low, background levels on the West Coast. The plumes, however, brought elevated levels of such organisms leading the scientists to say that it may be useful to think about microorganisms as air pollution: microorganisms that are unnoticed in background levels might be more relevant in concentrated doses.

"I was very surprised at the concentrations. One might expect the concentrations of cells to decrease with altitude based on fallout and dilution," Smith said. "But during these plume events, the atmosphere was pooling these cells just as it does with other kinds of air pollution."

Interestingly, Smith says, two of the three most common families of bacteria in the plumes are known for their ability to form spores in ways that they can hibernate safely during harsh conditions, making them especially well adapted to high altitude transport.

"I think we’re getting close to calling the atmosphere an ecosystem," Smith said. "Until recently, most people would refer to it as a conveyor belt, or a transient place where life moves through. But the discovery of so many cells potentially able to adapt to traveling long distances at high altitudes challenges the old classification."

Cells also can interact with their high-altitude environment, for example, becoming the nucleus for rain drops and snow flakes and influencing the amount of precipitation that falls. Other scientists estimate that 30 percent of global precipitation stems from microbes.

On the other hand, scientists have yet to see evidence of metabolism or growth of microorganisms while aloft and there’s a limited amount of time that any organism might reside there.

Sampling the upper troposphere for microorganisms in the past has been a spotty effort using aircraft and balloons, Smith said.

"Because it is so difficult to get samples, I argue it’s probably the last biological environment on the planet to be explored," he said.

Mount Bachelor, like many other mountains in the Cascades, has a peak tall enough to pierce the upper troposphere. Unlike other mountains in the Cascades, however, the top of Mount Bachelor is a far more accessible place for an observatory because a ski area exists there. There’s power and bringing equipment and personnel to the observatory is not a major undertaking, you just take the ski lift.

Funding for the work came from the National Science Foundation, National Geographic Society, NASA's Astrobiology Institute, the UW's NASA Space Grant Consortium and the UW Department of Biology.

Other co-authors are Peter Ward and Hilkka Timonen with the UW and UW Bothell respectively, Dale Griffin with the U.S. Geological Survey, Michele Birmele and Michael Roberts with NASA and Kevin Perry with the University of Utah.

For more information:
Smith, djsone@uw.edu
Suggested websites
Abstract of article in Applied and Environmental Microbiology
http://aem.asm.org/content/early/2012/12/04/AEM.03029-12.abstract?sid=7cab5430-6e6b-4326-bfe9-0f82293f1ea6
David J. Smith
http://www.biology.washington.edu/users/david-j-smith

Sandra Hines | Newswise
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>