Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants may affect the effect of wildfires

05.05.2009
Rising temperatures may lead to more tinder-dry vegetation, but that doesn’t mean there will be a higher risk for wildfires in a particular area.

It all depends on the type of vegetation in the area.

A new study on the cover of the May issue of Ecological Monographs shows that, in some cases, the types of plants growing in an area could override the effects of climate change on wildfire occurrence.

Lawrence Livermore National Laboratory scientist Tom Brown along with Philip Higuera of Montana State University and colleagues looked at the direct and indirect impacts of millennial scale climate change on fire occurrence in the south-central Brooks Range in Alaska.

The team looked at historical fire occurrence by analyzing sediments found in the bottom of lakes.

Using the Lab’s Center for Accelerator Mass Spectrometry, they carbon dated the deposits in the sediment and reconstructed fire occurrences from 15,000 B.C. to the present. They then measured the amount of plant parts, such as fossil pollen, to figure out what type of vegetation dominated the area during the different time periods. Like rings in a tree, different layers of sediment represent different times in the past.

The conclusion: historical changes fire frequencies coincided with changes in the type of vegetation in the area, more so than to rising temperatures alone.

“If all we did was look at rising temperatures and ignore the vegetation in the area, that wouldn’t be a good predictor of the likelihood of wildfires in a particular region,” Brown said. “You have to look at the whole picture.”

Although changing temperatures and moisture content set the stage for changes in wildfire frequency, they can often be trumped by changes in the distribution and abundance of plants.

Earlier studies have shown that the area burned across arctic and boreal regions will increase over the next century as climate change lengthens the fire season, decreases moisture and increases ignition rates. However, vegetation can alter the direct link between climate and fire by influencing the abundance, structure and moisture content of fuels across space and time, Brown said.

“There’s a complex relationship between fuels and climate,” he said. “Vegetation can have a profound impact on fire occurrences that are opposite or independent of climate’s direct influence on fire.”

In the recent study, the researchers found that changes in climate were less important than changes in vegetation. Despite a transition from a cool, dry climate to a warm, dry climate about 10,500 years ago, the researchers found a sharp decline in the frequency of fires. Their sediment cores from that time period revealed a vegetation change from flammable shrubs to fire-resistant deciduous trees.

“In this case, a warmer climate was likely more favorable for fire occurrence, but the development of deciduous trees on the landscape offset this direct climatic effect,” Higuera said.

The research implies that the impacts of climate change on modern-day fire frequencies could be strongly mediated by changes in vegetation. Thus, in some cases, the impacts of climate change on fire may be less intuitive than initially perceived.

“This could give fire managers a good indication that vegetation can substantially alter the direct effects of climate change on fire occurrence,” Brown said.

Other contributors include the University of Washington and the University of Illinois-Urbana.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>