Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants' internal clock can improve climate-change models

07.07.2009
The ability of plants to tell the time, a mechanism common to all living beings, enables them to survive, grow and reproduce.

In a study published in the latest issue of the prestigious journal Ecology Letters, an international team has studied this circadian clock from a molecular viewpoint and has found an ecological implication: it makes climate change scenarios and CO2 level figures more accurate.

The international team of researchers led by the University of Castilla-La-Mancha (UCLM) has compiled the research carried out to date on this topic in order to understand the implications of the so-called "circadian clock" as regards the survival and ecology of a wide range of plant species. The plants of the model species Arabidopsis thaliana, created in a laboratory environment without this ability, found it difficult to survive and reproduced less frequently.

"One hour before the sun comes out, a plant with a circadian clock already knows that it is time to wake up and all the genes associated to photosynthesis begin to activate," Víctor Resco de Dios, main author of the study and a researcher in the Environmental Science Department of the UCLM explained to SINC.

The study, which has been published in the latest issue of Ecology Letters, reveals the ecological implications of plants' ability to "tell the time". Researchers have studied the genes involved in photosynthesis and adapting to the climate.

As much as 90% of a plant's genes are regulated by the circadian clock. "The clock coordinates when a plant should flower and also when it should germinate a seed," Resco de Dios adds. According to the scientist, the circadian clock has a great capacity to adapt to its physical environment.

The Key to Surviving an Increase in Temperatures?

Plants take up CO2 by means of photosynthesis and can potentially mitigate climate change. However, "in studies performed by ecologists to ascertain the level of CO2 in the models, circadian regulation was not taken into account," the researcher underlines.

The team of scientists suggests this regulation should be included in climate models based on the study of plant life in order to obtain better and more accurate results. "A normal climate change model would forecast photosynthesis to be uniform between 6am and 10am in a tropical forest if environmental conditions (light, humidity, temperature, etc) are constant. However, as plants have a circadian clock, photosynthesis is seen to increase during that time of the day", the ecologist states.

According to the scientists, the circadian clock may well be the key for plants to survive a rise in temperatures. Plants without optimised circadian regulation will have "more difficulty to adjust to climate changes and survive the stress". The team now encourages further research from an ecological viewpoint, as "the value of this topic has been underestimated."

References:

Resco, Víctor; Hartwell, James; Hall, Anthony. "Ecological implications of plants' ability to tell the time" Ecology Letters 12(6): 583-592 junio de 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>