Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant production could decline as climate change affects soil nutrients

01.11.2013
As drylands of the world become even drier, water will not be the only resource in short supply. Levels of nutrients in the soil will likely be affected, and their imbalance could affect the lives of one-fifth of the world’s population.

That includes people living in Arizona, who may be in for a dustier future.


The cliff face of Cedar Mesa, in southeast Utah, overlooks one of many sites sampled in the world's drylands.

The findings are presented in a study published in Nature that details how soil changes may occur and discusses the implications. Co-author Matthew Bowker, assistant professor of forest soils and ecosystem ecology at Northern Arizona University, was involved with the project since 2009.

Bowker explained that most of the 17 nutrients that plants need to grow to their potential are soil resources, such as nitrogen and phosphorus. The statistical model he helped develop for the study suggests that as the climate becomes more arid, nitrogen will decrease and phosphorus will increase.

“Both are essential for plant growth, and both are typical components of fertilizer, but both need to be around in the right quantities for plant growth to proceed most efficiently,” Bowker said.

“It’s like a situation where you’re making hamburgers but run out of beef. You can’t just slip in another bun and still produce a hamburger.”

Drylands, which are defined by predominantly lower levels of moisture, cover about 41 percent of the earth’s surface. The study suggests that people who depend on those ecosystems for crops, livestock forage, fuel and fiber will find their resources increasingly restrained.

In Arizona, Bowker said, the projected decrease in plant production could magnify the impact of dust storms, which have been increasing in recent decades.

“We can probably expect more and more dust in the air,” he said.

The project involved visits by research teams in 16 countries to 224 locations on every continent except Antarctica. Bowker led one of the sampling teams, which visited 10 study sites in northern Arizona and Utah. Those sites ranged from dry, grassy shrublands with low precipitation to relatively wet sagebrush ecosystems.

“This is a testament to the power of networked science,” Bowker said, adding that it would have been “prohibitively expensive” for any one researcher or research group to complete the project.

Eric Dieterle | EurekAlert!
Further information:
http://www.nau.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>