Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant production could decline as climate change affects soil nutrients

01.11.2013
As drylands of the world become even drier, water will not be the only resource in short supply. Levels of nutrients in the soil will likely be affected, and their imbalance could affect the lives of one-fifth of the world’s population.

That includes people living in Arizona, who may be in for a dustier future.


The cliff face of Cedar Mesa, in southeast Utah, overlooks one of many sites sampled in the world's drylands.

The findings are presented in a study published in Nature that details how soil changes may occur and discusses the implications. Co-author Matthew Bowker, assistant professor of forest soils and ecosystem ecology at Northern Arizona University, was involved with the project since 2009.

Bowker explained that most of the 17 nutrients that plants need to grow to their potential are soil resources, such as nitrogen and phosphorus. The statistical model he helped develop for the study suggests that as the climate becomes more arid, nitrogen will decrease and phosphorus will increase.

“Both are essential for plant growth, and both are typical components of fertilizer, but both need to be around in the right quantities for plant growth to proceed most efficiently,” Bowker said.

“It’s like a situation where you’re making hamburgers but run out of beef. You can’t just slip in another bun and still produce a hamburger.”

Drylands, which are defined by predominantly lower levels of moisture, cover about 41 percent of the earth’s surface. The study suggests that people who depend on those ecosystems for crops, livestock forage, fuel and fiber will find their resources increasingly restrained.

In Arizona, Bowker said, the projected decrease in plant production could magnify the impact of dust storms, which have been increasing in recent decades.

“We can probably expect more and more dust in the air,” he said.

The project involved visits by research teams in 16 countries to 224 locations on every continent except Antarctica. Bowker led one of the sampling teams, which visited 10 study sites in northern Arizona and Utah. Those sites ranged from dry, grassy shrublands with low precipitation to relatively wet sagebrush ecosystems.

“This is a testament to the power of networked science,” Bowker said, adding that it would have been “prohibitively expensive” for any one researcher or research group to complete the project.

Eric Dieterle | EurekAlert!
Further information:
http://www.nau.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>