Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planning the urban future particularly important in poor, polluted cities

08.06.2011
The capital of Burkina Faso, Ouagadougou, is not only one of the fastest growing cities in the world, it is also extremely polluted.

Researchers from the University of Gothenburg, Sweden, have shown that the city climate contributes to the high pollution levels. However, increased knowledge about the city could turn bad into good.

‘The air quality in Ouagadougou is very bad. The biggest problem is the extreme levels of dust in the air – they are often more than 100 times higher than in Sweden. Yet the vulnerability to air pollution varies greatly between the rich and the poor,’ says Jenny Lindén at the Department of Earth Sciences, University of Gothenburg.

When the world’s population grows, the most rapid increase is found in the poorest cities, and this has an enormous effect on the environment and also a strong effect on the urban climate and air quality. The population of Ouagadougou, which borders the Sahara Desert in western Africa and is growing faster than any other city, will grow from today’s about 2 million people to 3.4 million in 2020.

The World Health Organisation has indicated that the most important cause of death in Burkina Faso is respiratory problems, which are strongly linked to air pollution. Respiratory problems cause 20 percent of all deaths, and the already high levels of air pollution will increase even further as the population keeps growing.

The pollution in Ouagadougou is mainly due to dust from the many unpaved roads in the city and from the Sahara Desert. The larger number of old and poorly maintained cars and mopeds are of course also problematic, along with the fact that three out of four households cook their food over an open fire. This means that the wealthiest people in the city are less exposed to pollution since they live in neighbourhoods with paved roads and have better vehicles and cleaner ways to cook food. Ouagadougou shares this situation with a large number of other cities. In fact, the phenomenon is rather normal among very poor cities around the world.

Jenny Lindén also shows that Ouagadougou has its own city climate with considerably lower temperatures at night in vegetated areas – a result that could imply reduced nocturnal heat stress if considered in urban planning.

‘In addition, the air above Ouagadougou tends to form in very stable layers, especially in the evening. This implies low wind speeds and limited air exchange between areas, which in turn means that the emissions from the city gets trapped. The atmospheric stability is not easily changed, but it is nevertheless important information since it means that pollutants emitted in the evening remains in the city.’

The results of Jenny Lindén’s studies can be used to design strategies to improve the air quality for the vulnerable urban population in the world’s poorest countries. The doctoral thesis Urban Climate and Air Pollution in Ouagadougou, Burkina Faso was presented and defended on 27 May.

Supervisor: Professor Ingegärd Eliasson.
Link to the thesis: hdl.handle.net/2077/24995
Contact:
Jenny Lindén, Department of Earth Sciences at the University of Gothenburg
+46 (0)31 786 28 35
+46 (0)730 27 39 24
jenny@gvc.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/24995
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>