Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planning the urban future particularly important in poor, polluted cities

08.06.2011
The capital of Burkina Faso, Ouagadougou, is not only one of the fastest growing cities in the world, it is also extremely polluted.

Researchers from the University of Gothenburg, Sweden, have shown that the city climate contributes to the high pollution levels. However, increased knowledge about the city could turn bad into good.

‘The air quality in Ouagadougou is very bad. The biggest problem is the extreme levels of dust in the air – they are often more than 100 times higher than in Sweden. Yet the vulnerability to air pollution varies greatly between the rich and the poor,’ says Jenny Lindén at the Department of Earth Sciences, University of Gothenburg.

When the world’s population grows, the most rapid increase is found in the poorest cities, and this has an enormous effect on the environment and also a strong effect on the urban climate and air quality. The population of Ouagadougou, which borders the Sahara Desert in western Africa and is growing faster than any other city, will grow from today’s about 2 million people to 3.4 million in 2020.

The World Health Organisation has indicated that the most important cause of death in Burkina Faso is respiratory problems, which are strongly linked to air pollution. Respiratory problems cause 20 percent of all deaths, and the already high levels of air pollution will increase even further as the population keeps growing.

The pollution in Ouagadougou is mainly due to dust from the many unpaved roads in the city and from the Sahara Desert. The larger number of old and poorly maintained cars and mopeds are of course also problematic, along with the fact that three out of four households cook their food over an open fire. This means that the wealthiest people in the city are less exposed to pollution since they live in neighbourhoods with paved roads and have better vehicles and cleaner ways to cook food. Ouagadougou shares this situation with a large number of other cities. In fact, the phenomenon is rather normal among very poor cities around the world.

Jenny Lindén also shows that Ouagadougou has its own city climate with considerably lower temperatures at night in vegetated areas – a result that could imply reduced nocturnal heat stress if considered in urban planning.

‘In addition, the air above Ouagadougou tends to form in very stable layers, especially in the evening. This implies low wind speeds and limited air exchange between areas, which in turn means that the emissions from the city gets trapped. The atmospheric stability is not easily changed, but it is nevertheless important information since it means that pollutants emitted in the evening remains in the city.’

The results of Jenny Lindén’s studies can be used to design strategies to improve the air quality for the vulnerable urban population in the world’s poorest countries. The doctoral thesis Urban Climate and Air Pollution in Ouagadougou, Burkina Faso was presented and defended on 27 May.

Supervisor: Professor Ingegärd Eliasson.
Link to the thesis: hdl.handle.net/2077/24995
Contact:
Jenny Lindén, Department of Earth Sciences at the University of Gothenburg
+46 (0)31 786 28 35
+46 (0)730 27 39 24
jenny@gvc.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/24995
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>