Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticides significantly reduce biodiversity in aquatic environments

18.06.2013
Current pesticide risk assessment falls short of protecting biodiversity

The pesticides, many of which are currently used in Europe and Australia, are responsible for reducing the regional diversity of invertebrates in streams and rivers by up to 42 percent, researchers report in the Proceedings of the US Academy of Sciences (PNAS).

Mikhail A. Beketov and Matthias Liess from the Helmholtz Centre for Environmental Research (UFZ) in Leipzig, together with Ben Kefford from the University of Technology, Sydney and Ralf B. Schäfer from the Institute for Environmental Sciences Landau, analysed the impact of pesticides, such as insecticides and fungicides, on the regional biodiversity of invertebrates in flowing waters using data from Germany, France and Victoria in Australia. The authors of the now-published study state that this is the first ever study which has investigated the effects of pesticides on regional biodiversity.

Pesticides, for example those used in agriculture, are among the most-investigated and regulated groups of pollutants. However, until now it was not known whether, or to which extent, and at what concentrations their use causes a reduction in biodiversity in aquatic environments. The researchers investigated these questions and compared the numbers of species in different regions: in the Hildesheimer Boerde near Braunschweig, in southern Victoria in Australia and in Brittany in France.

In both Europe and Australia, the researchers were able to demonstrate considerable losses in the regional biodiversity of aquatic insects and other freshwater invertebrates. A difference in biodiversity of 42 percent was found between non-contaminated and strongly-contaminated areas in Europe; in Australia, a decrease of 27 percent was demonstrated. The researchers also discovered that the overall decrease in biodiversity is primarily due to the disappearance of several groups of species that are especially susceptible to pesticides. These mainly include representatives of the stoneflies, mayflies, caddisflies, and dragonflies and are important members of the food chain right up to fish and birds. Biological diversity in such aquatic environments can only be sustained by them because they ensure a regular exchange between surface and ground water, thus functioning as an indicator of water quality.

Protection concepts fall short of requirements
One worrying result from the study is that the impact of pesticides on these tiny creatures is already catastrophic at concentrations which are considered protective by current European regulation. The authors point out that the use of pesticides is an important driver for biodiversity loss and that legally-permitted maximum concentrations do not adequately protect the biodiversity of invertebrates in flowing waters. New concepts linking ecology with ecotoxicology are therefore urgently needed. "The current practice of risk assessment is like driving blind on the motorway", cautions the ecotoxicologist Matthias Liess. To date, the approval of pesticides has primarily been based on experimental work carried out in laboratories and artificial ecosystems. To be able to assess the ecological impact of such chemical substances properly, existing concepts need to be validated by investigations in real environments as soon as possible. "The latest results show that the aim of the UN Convention on Biological Diversity to slow down the decline in the number of species by 2020 is jeopardized. Pesticides will always have an impact on ecosystems, no matter how rigid protection concepts are, but realistic considerations regarding the level of protection required for the various ecosystems can only be made if validated assessment concepts are implemented." The threat to biodiversity from pesticides has obviously been underestimated in the past.

Bettina Hennebach

http://www.ufz.de/index.php?en=31771

Publication
M.A. Beketov, B.J. Kefford, R.B. Schäfer, and M. Liess (2013): "Pesticides reduce regional biodiversity of stream invertebrates". PNAS, Early Edition. 17 June 2013, DOI: 10.1073/pnas.1305618110
http://www.pnas.org/cgi/doi/10.1073/pnas.1305618110
http://www.pnas.org/content/early/recent
The study has been funded by the Helmholtz Association as part of the ECOLINK research project.
Participating institutions
Helmholtz Centre for Environmental Research Leipzig, (Germany)
Institute for Environmental Sciences, University of Koblenz-Landau
Centre for Environmental Sustainability, University of Technology Sydney (Australia)
Further information
Helmholtz Centre for Environmental Research (UFZ)
Dr. Mikhail Beketov
Tel. 0341-235-1495
http://www.ufz.de/index.php?en=3718
and
PD Dr. Matthias Liess
Tel. 0341-235-1578
http://www.ufz.de/index.php?en=3714
or via
Tilo Arnhold (UFZ press office)
Tel.: +49-341-235-1635
http://www.ufz.de/index.php?de=640
Institute for Environmental Sciences
University Koblenz-Landau
Jun.-Prof. Dr. Ralf B. Schäfer
Tel.: 06341 280-31536
schaefer-ralf@uni-landau.de
Centre for Environmental Sustainability, School of the Environment, University of Technology, Sydney (UTS), Sydney, Australia
Dr. Ben Kefford
Tel.: 61 2 9514 4087
Email: ben.kefford@uts.edu.au
Links
"Digging from bothe sides" in: "Chemicals in the environment" (page 6)
http://www.ufz.de/export/data/global/44068_ufzspezial_okt_2012.pdf
Study: Pesticide authorisation procedures fail to adequately protect biodiversity in rivers (Press release 31 May 2012):
http://www.ufz.de/index.php?en=30499
Pesticides pollute European waterbodies more than previously thought (Press release 13 October 2011):
http://www.ufz.de/index.php?en=22196
ECOLINK-Projekt:
http://www.ufz.de/ecolink/index.php?en=17206
At the Helmholtz Centre for Environmental Research (UFZ) scientists are researching the causes and consequences of far-reaching changes to the environment. They are concerned with water resources, biological diversity, the consequences of climate change and adaptability, environmental and biotechnologies, bioenergy, the behaviour of chemicals in the environment, their effect on health, modelling and social science issues. Their guiding theme: Our research contributes to the sustainable use of natural resources and helps to secure this basis for life over the long term under the effects of global change. The UFZ employs 1,100 people in Leipzig, Halle and Magdeburg. It is financed by the federal government and the federal states of Saxony and Saxony-Anhalt.

http://www.ufz.de/index.php?en=11382

The Helmholtz Association contributes towards solving major challenges facing society, science and the economy with top scientific achievements in six areas of research: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With over 34 000 employees working in 18 research centres and an annual budget of around 3.8 billion Euros, the Helmholtz Association is the largest scientific organisation in Germany. Its work continues the tradition established by the natural scientist Hermann von Helmholtz (1821-1894).

http://www.helmholtz.de

Bettina Hennebach/Tilo Arnhold | UFZ News
Further information:
http://www.ufz.de/index.php?en=11382

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>