Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticides are more toxic for soil organisms in dry soil and at enhanced temperatures

11.09.2014

Soil organisms react more sensitive to marketable pesticides when exposed in dry soil and at enhanced temperatures. Both conditions may occur more often in the future due to climate change. Singularly and combined these factors lower the toxicity threshold of fungicides for springtails.

The study by scientists from the LOEWE Biodiversity and Climate Research Centre (BiK-F), the Goethe University and the ECT Oekotoxikologie GmbH was published in the September issue of the journal "Applied Soil Ecology".


The experiment, also conducted using the species Sinella curviseta showed a significant influence of extreme cli-matic conditions on the toxicity of the fungicide pyrimethanil.

© C. Bandow

Springtails are tiny, about 10 mm large creatures, which participate in essential soil functions. Its numerous species, include Folsomia candida and Sinella curviseta, and are widely distributed. They form part of a huge crowd of soil organisms, which decompose organic material and build up humus. If springtails are affected, therefore soil fertility will be affected too.

As the new study shows, low soil moisture (i.e. 30 % of the water holding capacity) leads to significant reduction of springtail juveniles. "We experimented with two different species of springtails. Both of them – but especially Folsomia candida – might have difficulties to produce enough offspring to keep a population stable in dry soil," says Cornelia Bandow, an ecologist at ECT Ecotoxicology GmbH, who conducts research for the German Biodiversity and Climate Research Centre (BiK-F).

Extreme climate conditions may also alter the effect of pesticides on soil organisms. "Low soil moisture and enhanced temperatures significantly lower the threshold upon which the fungicide pyrimethanil may be toxic." explains Cornelia Bandow. In the framework of this study the toxic threshold refers to the concentration of the fungicide at which the population is 50 % less than in an uncontaminated soil. Thus at 26 degrees and a soil moisture of 30 % the threshold was up to half of the threshold that was measured at 20 degrees and 50 % soil moisture.

The experiment was conducted using 66 test vessels filled with a standard soil which was treated with different concentrations of pyrimethanil. Pyrimethanil is a broad spectrum fungicide, which is used on strawberries, pome fruit and vine to protect against and treat fungal infestation. To test for future climate conditions, the experiments were performed independently at two different temperatures of 20 degrees and 26 degrees. The soil was furthermore moistened to different moisture levels. After 28 days researchers counted the individuals to determine the reproductive success of the model organisms under the different climatic conditions.

Should fungicides thus be avoided at all so as not to harm soil organisms? Not necessarily. "A risk for springtails under field conditions may not be expected as the toxic threshold of pyrimethanil is far above the maximum concentrations that may occur in soil if the fungicide is used according to existing regulations," says Bandow and adds "It depends on the species and the substance whether the sensitivity alters under extreme climate conditions or not." Therefore, the researchers also plan to test several other pesticides using a variety of soil organisms.

Paper:
Bandow, Cornelia, Karau, Nora, Römbke, Jörg. Interactive effects of pyrimethanil, soil moisture and temperature on Folsomia candida and Sinella curviseta (Collembola).
- Applied Soil Ecology, DOI: 10.1016/j.apsoil.2014.04.010

For more information please contact:

Cornelia Bandow
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F) &
ECT Oekotoxikologie GmbH
Tel. +49 (0) 6145 9564 11
c.bandow@ect.de

or
Sabine Wendler
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F),
Press officer
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de

 
LOEWE Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐ Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action. For further details, please visit www.bik‐f.de

Sabine Wendler | Senckenberg

Further reports about: BiK-F Biodiversity Biodiversität Climate ECT Ecology Senckenberg conditions fungicide moisture species temperatures toxic

More articles from Ecology, The Environment and Conservation:

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>