Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perennial vegetation, an indicator of desertification in Spain

08.09.2009
A team of scientists has analyzed 29 esparto fields from Guadalajara to Murcia and has concluded that perennial vegetation cover is an efficient early warning system against desertification in these ecosystems. The study has been published in the Ecology magazine.

In order to foresee the appearance of desertification processes, defined by the United Nations as the "degradation of the land into arid, semi-arid and sub-humid areas, resulting from various factors, including climatic variations and human activity", the team of scientists from the Rey Juan Carlos University (URJC) has evaluated the spatial distribution of vegetation as an "early" indicator of the appearance of desertification processes.

To do so, they analyzed the formations dominated by esparto or needlegrass (stipa tenacissima), one of the most representative ecosystems in the Iberian Peninsula.

Fernando T. Maestre is the main author of the study published in the Ecology magazine and is the Senior Lecturer at the Higher School of Experimental Sciences and Technology of the URJC. "The losses of vegetable cover in the ecosystems studied lead to a decrease in the fertility and functionality of the ecosystem and bring about the beginning of desertification processes", he explained to SINC.

After characterizing the spatial distribution of the vegetation and analyzing the fertility of the soil and the capacity of the ecosystem to recycle the organic matter into nutrients which can be assimilated by the plants, the researchers showed that the spatial distribution of the vegetation on all the plots of land was characterized, from the statistical point of view, by displaying a potential "truncated" distribution. This takes place when the areas of vegetation of the greatest size are lost.

In spite of the above, "the plots studied showed, for example, a great variation in aspects as important as the content of nitrogen and phosphorus, while many of them did not display any symptoms of undergoing desertification processes", indicated Maestre. The researchers also found that the total vegetation cover was "positively and significantly" related to the fertility of the soil.

The conclusions indicate that perennial vegetation cover, "a parameter easily attainable by means of taking samples in the field or air photographs", can be used in a "satisfactory and robust manner" in order to evaluate the early appearance of desertification processes in semi-arid esparto fields.

18% of the surface area of Spain, at risk

Identifying that a specific ecosystem is undergoing desertification is of "great importance" when identifying the causes which are leading to its desertification and for knowing how this complex phenomenon may affect its functioning and the services it provides. Besides, "the search for early warning desertification indicators allows us to establish management and restoration measures before the degradation process of the ecosystem becomes irreversible", indicated Maestre.

Nevertheless, these results do not support those obtained by another team of researchers, whose study was published in 2007 in Nature (449: 213�). This research endorsed the use of the spatial distribution of vegetation as a universal indicator of the early appearance of desertification processes. "In that work, it was suggested that when the vegetation of a specific area characterized by a potential distribution becomes characterized by a potential truncated distribution, the risk of desertification is imminent", clarified Maestre.

Spain is the country with the greatest risk of desertification in Europe. According to the estimates of the Ministry of the Environment and Rural and Marine Affairs, 18% of the surface area of Spain displays a high or very high risk of suffering this phenomenon. Desertification has already had significant consequences from the ecological and socio-economic point of view all around the world, and "directly affects about 250 million people in the developing countries", according to the estimates Maestre made in another study published in 2007 in Science (316: 847-851).

References: Maestre, Fernando T. y Escudero, Adrián, "Is the patch size distribution of vegetation a suitable indicator of desertification processes?", Ecology 90(7):1729-1735, julio de 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>