Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peat fires drive temperatures up

30.11.2009
Burning rainforests release huge amounts of greenhouse gases

Peatlands, especially those in tropical regions, sequester gigantic amounts of organic carbon. Human activities are now having a considerable impact on these wetlands.

For example, drainage projects, in combination with the effects of periodic droughts, can lead to large-scale fires, which release enormous amounts of carbon dioxide (CO2) into the atmosphere, and thus contribute to global warming. Using laser-based measurements, Professor Florian Siegert and his research group at Ludwig-Maximilians-Universität (LMU) in Munich have now estimated the volume of peat burned in such fires with unprecedented accuracy.

The new data imply that, in 2006, peatland fires in Indonesia released up to about 900 million metric tons of CO2. This is more than the total amount of CO2 emitted in Germany in that year, and represents about 16 % of the emissions associated with deforestation worldwide. "Our work once again underlines the decisive role played by acutely endangered tropical wetland ecosystems in the context of global warming", says Siegert. "The study also provides important data for the upcoming World Climate Conference in Copenhagen. One of the goals of that meeting is to reach agreement on how financial and other incentives can be employed for the protection of tropical wetlands, and so help preserve their enormous capacity for carbon storage. (PNAS online, 26 November 2009)

Over the course of millions of years, plant material can be converted into coal. The first step in this process leads to the formation of peat, an organic material that is combustible and is harvested for heating purposes in many parts of Europe. As a condensed form of plant mass, peat is also an important storage form of carbon at near-surface levels. "It is estimated that, in the tropics, peat swamps cover an area of 30 to 45 million hectares", says Professor Florian Siegert from the GeoBio-Center of the LMU Munich. "This corresponds to about 10% of the total area of peatlands in the world, and means that tropical peatlands represent one of the largest near-surface storage sites for organic carbon that we have". – And almost half of this reservoir is located in a single country, Indonesia.

Many of the coastal peatlands on Borneo formed over 20,000 years ago. Since that time – as in most tropical peatlands – convex domes of peat, up to 20 metres thick, have developed. They serve as the basement layer of tropical peat swamp forests and possess a huge capacity for storing carbon. Indeed, the total amount of carbon locked in the peatlands of Indonesia alone is thought to be more than 50 gigatons. However, these areas are in imminent danger. Left in their natural state, they are simply too wet to burn. But drainage measures and deforestation disturb their ecological equilibrium and make them vulnerable to fire, which is almost always caused by human activities. Private companies often exploit fires to prepare the ground for the establishment of large-scale plantations for the production of wood pulp and palm oil,.

The fires, however, are doubly dangerous. The smoke they produce contains tremendous amounts of aerosols and toxic gases, which can lead to serious health problems in many areas of Southeast Asia. Furthermore, the soil-bound organic carbon is transformed into carbon dioxide, a greenhouse gas which plays a leading role in global warming. The problems are further exacerbated by the fact that climatically induced periods of aridity increase the combustibility of the peat. For instance, during the drought associated with the El Niño phenomenon in 1997/98, up to 2.57 gigatons of carbon was released from the wetlands of Indonesia alone. "Estimates vary widely", says Siegert, but it is assumed that the carbon released amounted to at least 13% and perhaps as much as 40% of the total carbon emissions attributable to the burning of fossil energy sources. Such levels of carbon dioxide represent a very considerable contribution to overall warming of the globe."

The Munich researchers have now used a novel method to measure exactly how much peat is consumed during a fire. This is the most direct and reliable way of estimating how much carbon dioxide is set free. Because direct access to the wetlands is difficult, Siegert and his team performed their measurements from a helicopter using a technique referred to by the acronym LIDAR (for Laser Detection and Ranging). LIDAR uses a laser that emits high-frequency optical signals, and the echoes produced when the signals hit the ground are recorded, allowing one to determine the level of the surface with centimetre precision. "Using this instrument, we were able to show that the catastrophic fires in 2006 destroyed the peat layer to an average depth of 0.3 metres", says Siegert. This value, together with other data, led the scientists to conclude that from the 2.79 million hectares in their study area more than 180 million tons of CO2were released, equivalent to 20% of all the CO2 emitted in Germany that same year.

As Siegert emphasizes, "This huge input originated from just 13% of the peatlands in Indonesia". When one uses the new data to estimate the level of CO2 released for all of Indonesia in 2006 – a year with a weak El Nino, in which rainfall was relatively low – one comes up with a figure of up to 900 million tons. This value exceeds the total emitted from all sources in Germany in that year, and corresponds to about 16% of all emissions attributable to deforestation worlwide. The regular occurrence of large-scale forest fires alone makes Indonesia one of the largest producers of atmospheric CO2 in the world, and this status is confirmed by the latest, high-precision data, once again emphasiszing the importance of peat burning for global warming. But this significant source of emissions has yet to be taken into account by the IPCC (the Intergovernmental Panel on Climate Change) and incorporated into computer models of regional and global climate.

Most studies on changes in land use and their effects on climate change have considered only total forest biomass. The new data demonstrate that, in future, one must also focus on the biomass that is stored in the soil. The carbon content of peat swamps is dependent on the thickness of the peat layer, and can be up to 20 times greater than the amount stored in forest trees. Siegert points out that "growth of the market for palm oil, stimulated by increased demand for cheap biofuels, will make the situation worse, as the incidence of fires this year has already shown. This is something that should have repercussions for European policies in the area of renewable energy sources. Also on the agenda in Copenhagen are programmes such as REDD (for Reduced Emissions from Deforestation and Degradation in developing countries'), which is designed to provide monetary incentives aimed at protecting tropical peat swamp forests and their giant carbon stores". (suwe)

Publication:

Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands
Uwe Ballhorn, Florian Siegert, Mike Mason, and Suwido Limin
PNAS online, 26 November 2009

Professor Florian Siegert | EurekAlert!
Further information:
http://www.bio.lmu.de

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>