Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patagonian glacier yields clues for improved understanding of global climate change

04.08.2008
Although ice cores obtained from Antarctica have now provided more than 800 000 years’ worth of climate records, analysis of them alone is insufficient for understanding the history of climatic interactions between the diverse regions of the world.

Boreholes drilled during the 1990s on six glaciers in the tropical zone of the Andean Cordillera gave rise to a substantial collection of data on the changes and developments of the tropical climate of the Southern Hemisphere.

However, no investigation of this type had hitherto been performed at mid latitudes, leaving a large gap in documentation on climate. An expedition in 2005 by an IRD team and its partners1 on the San Valentin glacier in the Chilean part of Patagonia demonstrated the potential of that site for exploring climatic variations of the past. The analyses gave the first evidence of influences from Antarctica and the Pacific on the Southern climate of the American continent, thus indicating the complexity of the climate system in this ecologically fragile region. A follow-up to this test study, a borehole made in 2007 on the whole thickness of the glacier, should provide the element that was still missing from the glacier records on the Southern Hemisphere’s climate.

A better understanding of climate variations at planetary scale is one of climate scientists’ crucial concerns. Stable water isotope analysis, the chemistry of ice cores taken from the Arctic and Antarctic polar ice caps and of air bubbles trapped in them now allow a chronology to be drawn up of the climate changes that took place over the past 800 000 years. However, those data, collected at extreme latitudes, are not enough for understanding climatic interactions operating at the scale of the whole Earth or of the most densely populated regions. Similar investigations are needed on glaciers located at lower latitudes. Scientists have therefore since the 1990s been undertaking borehole surveys in the Andean glaciers.

The Andes are particularly suited for sampling climate data concerning the whole of the Southern Hemisphere owing to their high altitudes and N-S orientation. Boreholes on six glaciers of the Andean Cordillera at tropical latitudes have already yielded information on South America’s past climate variability (up to 25 000 years). However, no study of this type had yet been conducted in Patagonia, at mid-latitudes of the Southern Hemisphere.

During a 2005 expedition by an IRD team and its Chilean partners on the San Valentin glacier (Patagonia, 47°S, 4032 m), a 16 m shallow firn core was extracted in order to evaluate this site’s potential as a record of our climate. A borehole at this latitude should provide the element still missing from ice field documentation on the Southern Hemisphere’s climate. Geographically, it is at the interface between the tropics and the South Pole and should contain clues as to how tropical and polar atmospheric circulation influence this region’s climate.

Preliminary ice core analysis revealed that the isotopic and chemical tracers are remarkably well preserved owing to a sufficiently cold ice temperature (-11°C). Dating combining determination of radioactive element levels (tritium, cesium, americium, lead 210) and the number of seasonal cycles of chemical species gave an estimated annual snow accumulation of about 35 cm. With just 16 m of ice the hope was to obtain a climate record for a period of at best a few years, but dating showed that the record in fact went back to the early 1960s. Combination of oxygen isotope ratio determinations with those of hydrogen was then used to estimate the precipitations that feed the San Valentin glacier.

The difference between the isotopic ratios - the deuterium excess - is linked essentially to the temperature of the oceanic source of the precipitation, making it possible to differentiate the air masses coming from the pole, formed above a cold ocean, from those arising over a more temperate ocean like the Pacific. Similarly, a high marine salt concentration in ice means that the precipitation that feeds the glacier arrives with marine air masses, formed over the Pacific. Conversely, a low sodium concentration characterizes continental air masses, which have travelled for a longer time. Patagonia was hitherto thought to be subjected mainly to westerly winds off the Pacific, but this dual ice core analysis yielded the first evidence that this region also comes under the influence of meteorological regimes that arise further south, in the Antarctic (see Figure).

A second drilling expedition conducted on San Valentin in 2007 gave the team the opportunity to drill through the entire 122 m thickness of the glacier. The first investigations on this second ice core suggest that it contains a climate record of several thousand years. By cross-referring the information contained in this unique core with those already obtained for the glaciers lying further North on the Cordillera, it could therefore be possible to trace the climate changes in all the whole of the Southern Hemisphere during the past few thousand years and thus better anticipate its reactions to global climate variations.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr
http://www.ird.fr/fr/actualites/fiches/2008/fas300.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>