Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite loads a cause of salmon mortality, linked to land use changes

16.08.2011
A recent study suggests that parasites in fish, including threatened species of Oregon coho salmon, may have more profound impacts on fish health than has been assumed, and could be one of the key mechanisms by which habitat and land use changes cause salmon mortality.

It’s not just the presence or absence of parasites that is important, the research found, but their numbers that can build up over years or decades and ultimately cause major impacts.

The study will be published soon in the journals Aquaculture, Journal of Parasitology, and International Journal of Parasitology. It was done by researchers from Oregon State University and other agencies, and concluded that heavy loads of parasites can affect salmon growth, weight, size, immune function, saltwater adaptation, swimming stamina, activity level, ability to migrate and other issues. Parasites drain energy from the fish as they grow and develop.

“We’ve known for a long time that salmon and other fish are affected by parasites, so that isn’t new,” said Mike Kent, an OSU professor of microbiology. “Because parasites have been present for decades, they have often been dismissed as a cause of increasing salmon mortality.

“But we’re now getting a better appreciation that it’s the overall parasite load that is so important,” he said. “The higher levels of mortality only show up with significant increases in the parasite burden.”

And that increase in parasite numbers, Kent said, is a slow, gradual response to warmer waters and heavier nutrient loads that can be a result of logging, agriculture, inadequate streamside protection and other land use or management changes over many years.

“Salmon can actually tolerate a fairly wide range of temperatures, it’s not just the fact a stream is warmer that’s killing them, in and of itself,” he said. “We now believe that some of these forces are leading to heavier parasite loads. This could be important in understanding declining salmon populations.”

Some of the digenean parasites that can infect salmon and other fish have complex life cycles, which include passage through the intestinal tracts of birds that eat fish, producing eggs and then infecting snails. Snails thrive in warmer water with higher nutrient loads from common fertilizers.

It’s been historically difficult to study these issues in salmon, Kent said, because they migrate and cannot be easily analyzed, as fish can when they are trapped in a lake or pond.

In the new study, researchers did both laboratory and field analysis of fish in Oregon’s West Fork Smith River. The impact of parasites on fish health were much more severe in a part of the river where water moved more slowly and nearby logging and agricultural practices increased water temperature and nutrient loads. Fish in this area had parasite infestations about 80 times higher than those higher up in the tributary.

The various impacts on fish health, the researchers said, could affect their ability to survive. Fish size influences juvenile overwinter survival, for instance, and swimming ability that’s essential to avoiding predators.

“Understanding why certain salmon populations are heavily infected with these parasites, which likely are driven by landscape characteristics, could help in management or recovery planning,” the scientists wrote in their conclusion, “given that our data indicates that severity of these infections are associated with survival.”

The study was done by scientists from OSU and the Oregon Cooperative Fish and Wildlife Research Unit. The corresponding author was Jayde Ferguson, a doctoral student in the OSU Department of Microbiology, and other collaborators included researchers from the OSU Department of Statistics, College of Veterinary Medicine, and Carl Schreck in the Department of Fisheries and Wildlife. The research was supported by the Oregon Department of Fish and Wildlife.

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

The study this story is based on is available online: http://hdl.handle.net/1957/22084

Michael Kent | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: College OSU Parasitology Science TV Wildlife fish health parasite wasps salmon populations

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>