Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When palm trees gave way to spruce trees

19.06.2009
For climatologists, part of the challenge in predicting the future is figuring out exactly what happened during previous periods of global climate change.

One long-standing climate puzzle relates to a sequence of events 33.5 million years ago in the Late Eocene and Early Oligocene. Profound changes were underway. Globally, carbon dioxide levels were falling and the hothouse warmth of the dinosaur age and Eocene Period was waning. In Antarctica, ice sheets had formed and covered much of the southern polar continent.

But what exactly was happening on land, in northern latitudes? When and how did Northern glaciation begin, and what does this knowledge add to the understanding of the relationship between carbon dioxide levels and today's climate?

An international team that included Dr. David Greenwood, an NSERC-funded researcher at Brandon University, now provides some of the very first detailed answers, and they come from an unusual source.

"Fossils of land plants are excellent indicators of past climates," said Dr. Greenwood. "But the fossil plant localities from the Canadian Arctic and Greenland don't appear to record this major climate change, and pose problems for precisely dating their age, so we needed to look elsewhere."

The "where" was in marine sediments entombed when the North Atlantic Ocean was beginning to open, and lying now at the bottom of today's Norwegian-Greenland Sea. Sediment cores taken from there contained a record of ancient spores and pollen blown from the continent to the west.

"These marine sediment cores give us a very precise chronology of the changes in the dominant land plants," said Dr. Greenwood "and since many of these species have modern relatives, we can assume that the temperatures and environments they lived in were very similar."

To arrive at a holistic picture of the climate of the transition, the researchers merged the plant data with physical information about the state of the atmosphere and ocean taken from chemical and isotopic information in the same sediments, and compared this to computer modelling of climate in the period.

"We can see that summer temperatures on land remained relatively warm throughout the Eocene/Oligocene transition, but that the period was marked by increasing seasonality," said Dr. Greenwood.

"Mean temperatures during the coldest month dropped by five degrees Celsius, to just above freezing," he said.

"This was probably not enough to create much in the way of continental ice on East Greenland," he said, "but it did wipe out palms and other subtropical trees such as swamp cypress. They were replaced by temperate climate trees such as spruces and hemlock."

The researcher said that, nonetheless, the middle period of the transition remained fairly warm. "Hickory and walnut were still present, but these became rare in the final stages," he said.

Although the march to a cooler world was gradual in northern latitudes, it was inevitable according to Dr. Greenwood.

"Changes in the earth's position in its orbit were leading a much greater seasonal range in radiation for polar regions and, overall, heat was becoming more concentrated in the tropics, largely due to a global drop in carbon dioxide levels in the atmosphere" he said.

The group's detailed record of the Eocene/Oligocene transition will appear in the June 18 issue of Nature. Further information can be found in a release from the University of Southhampton, England.

David Greenwood | EurekAlert!
Further information:
http://www.brandonu.ca

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>