Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When palm trees gave way to spruce trees

19.06.2009
For climatologists, part of the challenge in predicting the future is figuring out exactly what happened during previous periods of global climate change.

One long-standing climate puzzle relates to a sequence of events 33.5 million years ago in the Late Eocene and Early Oligocene. Profound changes were underway. Globally, carbon dioxide levels were falling and the hothouse warmth of the dinosaur age and Eocene Period was waning. In Antarctica, ice sheets had formed and covered much of the southern polar continent.

But what exactly was happening on land, in northern latitudes? When and how did Northern glaciation begin, and what does this knowledge add to the understanding of the relationship between carbon dioxide levels and today's climate?

An international team that included Dr. David Greenwood, an NSERC-funded researcher at Brandon University, now provides some of the very first detailed answers, and they come from an unusual source.

"Fossils of land plants are excellent indicators of past climates," said Dr. Greenwood. "But the fossil plant localities from the Canadian Arctic and Greenland don't appear to record this major climate change, and pose problems for precisely dating their age, so we needed to look elsewhere."

The "where" was in marine sediments entombed when the North Atlantic Ocean was beginning to open, and lying now at the bottom of today's Norwegian-Greenland Sea. Sediment cores taken from there contained a record of ancient spores and pollen blown from the continent to the west.

"These marine sediment cores give us a very precise chronology of the changes in the dominant land plants," said Dr. Greenwood "and since many of these species have modern relatives, we can assume that the temperatures and environments they lived in were very similar."

To arrive at a holistic picture of the climate of the transition, the researchers merged the plant data with physical information about the state of the atmosphere and ocean taken from chemical and isotopic information in the same sediments, and compared this to computer modelling of climate in the period.

"We can see that summer temperatures on land remained relatively warm throughout the Eocene/Oligocene transition, but that the period was marked by increasing seasonality," said Dr. Greenwood.

"Mean temperatures during the coldest month dropped by five degrees Celsius, to just above freezing," he said.

"This was probably not enough to create much in the way of continental ice on East Greenland," he said, "but it did wipe out palms and other subtropical trees such as swamp cypress. They were replaced by temperate climate trees such as spruces and hemlock."

The researcher said that, nonetheless, the middle period of the transition remained fairly warm. "Hickory and walnut were still present, but these became rare in the final stages," he said.

Although the march to a cooler world was gradual in northern latitudes, it was inevitable according to Dr. Greenwood.

"Changes in the earth's position in its orbit were leading a much greater seasonal range in radiation for polar regions and, overall, heat was becoming more concentrated in the tropics, largely due to a global drop in carbon dioxide levels in the atmosphere" he said.

The group's detailed record of the Eocene/Oligocene transition will appear in the June 18 issue of Nature. Further information can be found in a release from the University of Southhampton, England.

David Greenwood | EurekAlert!
Further information:
http://www.brandonu.ca

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>