Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Palm Oil Massive Source of Carbon Dioxide

Expanding production of palm oil, a common ingredient in processed foods, soaps and personal care products, is driving rainforest destruction and massive carbon dioxide emissions, according to a new study by Yale and Stanford researchers.
The study, published in the journal Nature Climate Change, shows that deforestation for the development of oil palm plantations in Indonesian Borneo is becoming a globally significant source of carbon dioxide emissions.

Plantation expansion is projected to pump more than 558 million metric tons of carbon dioxide into the atmosphere in 2020, an amount greater than all of Canada’s current fossil fuel emissions.

Indonesia is the leading producer of palm oil and palm kernel oil, which together account for more than 30 percent of the world’s vegetable oil use and can be used for biodiesel. Most of Indonesia’s oil palm plantation expansion is occurring on the island of Borneo, also known as Kalimantan, which occupies a land area nearly the size California and Florida combined. Plantation leases, covering 32 percent of Kalimantan’s lowlands outside of protected areas, represent a major land bank that is slated for development over the next decade, according to the study.

In 2010 alone, land-clearing for oil palm plantations in Kalimantan emitted more than 140 million metric tons of carbon dioxide, an amount equivalent to annual emissions from 28 million vehicles.

Home to the world’s third-largest tropical forest area, Indonesia is also one of the world’s largest emitters of greenhouse gasses, due to rapid loss of carbon-rich forests and peatlands. Since 1990, development of oil palm plantations has cleared about 16,000 square kilometers of Kalimantan’s primary and logged forested lands, an area about the size of Hawaii. This accounts for 60 percent of Kalimantan’s total forest cover loss in that time, according to the study’s authors.

“Despite contentious debate over the types and uses of lands slated for oil palm plantations, the sector has grown rapidly over the past 20 years,” said project leader Lisa Curran, a professor of ecological anthropology at Stanford and a senior fellow at the Stanford Woods Institute for the Environment. By combining field measurements with analyses of high-resolution satellite images, the study evaluated lands targeted for plantations and documented their carbon emissions when converted to oil palm.

The study’s researchers generated the first comprehensive maps of oil palm plantation expansion from 1990 to 2010. Using new classification technology developed by study co-author Gregory Asner of the Carnegie Institution’s Department of Global Ecology, the researchers quantified the types of land cleared for oil palm plantations, as well as carbon emissions and sequestration from oil palm agriculture.

“A major breakthrough occurred when we were able to discern not only forests and non-forested lands, but also logged forests, as well as mosaics of rice fields, rubber stands, fruit gardens and mature secondary forests used by smallholder farmers for their livelihoods,” said Kimberly Carlson, a Yale doctoral student and lead author of the study. “With this information, we were able to develop robust carbon bookkeeping accounts to quantify carbon emissions from oil palm development.”

The research team gathered oil palm land lease records during interviews with local and regional governmental agencies. These records identify locations that have received approval and are allocated to oil palm companies. The total allocated leases spanned about 120,000 square kilometers, an area slightly smaller than Greece. Most leases in the study occupied more than 100 square kilometers, an area slightly larger than Manhattan.

Using these leases in combination with land cover maps, the team estimated future land-clearing and carbon emissions from plantations. Eighty percent of leases remained unplanted in 2010. If all of these leases were developed, more than a third of Kalimantan’s lowlands would be planted with oil palm by 2020.

The research study, “Carbon Emissions from Forest Conversion by Kalimantan Oil Palm Plantations,” was supported by the NASA Land Cover/Land-Use Change Program, the John D. and Catherine T. MacArthur Foundation, the Santa Fe Institute and the National Science Foundation.

Media Contact:

David DeFusco
Director of Media Relations and Outreach
Yale School of Forestry & Environmental Studies
195 Prospect Street
New Haven, CT 06511

Phone: 203 436-4842
Office: Kroon Hall, Room 235

David DeFusco | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>