Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone masks plants volatiles, plant eating insects confused

03.04.2013
Increases in ground-level ozone, especially in rural areas, may interfere not only with predator insects finding host plants, but also with pollinators finding flowers, according to researchers from Penn State and the University of Virginia.

"Ozone pollution has great potential to perniciously alter key interactions between plants and animals," the researchers said in a recent issue of Environmental Research Letters.

The animal tested in this case was the striped cucumber beetle, a predator of cucurbits -- cucumber, squash, pumpkin and melons. These insects dine on the plants from the moment they emerge from the ground and when fruit forms, they eat that as well.

"Insects detect odor with olfactory receptors located on their antennae," said Jose D. Fuentes, professor of meteorology, Penn State. "These receptors sense plant-emitted volatile organic compounds in very small amounts -- as low as six molecules hitting an antenna."

However, ozone, which is a very reactive substance, degrades the volatile organic compounds when they mix to the point where they no longer stimulate the olfactory system.

Fuentes, working with John Zenker, Penn State undergraduate in meteorology, and T'ai H. Roulston, research associate professor and curator, Blandy Experimental Farm, University of Virginia, tested the beetles in an enclosed Y-tube apparatus so that the insect could choose which branch to take. Researchers collected the insects from pumpkin and squash plants. They tested the insects using buffalo gourd plants, a naturally growing wild gourd that likes semiarid areas.

Separate air streams flowed into the two branches of the Y-tube. Choices of air in each tube were ambient filtered air, ambient filtered air plus up to 120 parts per million ozone, ambient filtered air plus volatile organic compounds, or air plus up to 120 parts per billion ozone and volatile organic compounds from the plant. To obtain this mix, or only ozone or volatile organic compounds, that branch flowed either to a plant chamber or ozone generator or both.

The researchers tested the insects with all ambient air, with ambient air and ozone, with ambient air and volatile organic compounds, and with ambient air and a mix of ozone and volatile organic compounds. When presented with an ambient air or volatile organic compound airstream, the beetles chose the volatile organic compound tube 80 percent of the time.

"However, as the ozone levels increased, they chose the path to the flower less frequently," said Fuentes. "By the time the mix contained 80 parts per billion ozone, the beetles showed no preference for either tube."

The researchers also tested the beetles with volatile organic compounds and a mix of volatile organic compounds and ozone. At low ozone levels, the insects showed no preference, but as ozone levels increased, the insects increasingly preferred the ozone-free path. At 80 parts per billion, the beetles chose the volatile organic compounds without ozone significantly more often than the ozonized mixture.

While one might think that higher ozone levels in the lower atmosphere would improve crops because predator insects would be unable to find their hosts, the additional ozone would also interfere with mutualistic insect plant responses such as pollination.

The National Science Foundation supported this research.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>