Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone detection

18.01.2010
Researchers in Freiburg have developed a highly-sensitive, miniaturized mobile ozone sensor which can be used not only in air, but also in water and in the vicinity of explosive gases.

The Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg is developing improved chemical sensors that are not prohibitively expensive. One particularly important area of application involves the regular measurement of ozone content in air and other media.

This gas is a powerful oxidizing agent and can cause a wide range of symptoms in humans, including lacrimation, irritation of the mucous membranes in the mouth, throat, and bronchial tubes, headaches, coughing and even deterioration in lung function. The main sources of ozone pollution are industrial and transport emissions; particularly in warmer weather, these react with intensive UV radiation to form ground-level ozone.

But laser printers and copiers, machines so prevalent in modern-day offices, can also emit ozone. The European Commission has announced its intention to cut the guideline value for ozone in the air from the current level of 90 parts per billion to 60 parts per billion by 2010, and when this new regulation comes into force, there will be an increased demand for inexpensive ozone sensors.

But as project manager Dr. Volker Cimalla of the IAF explains: “Since ozone is, at the same time, an agent with high application potential, novel sensors are required, which have to be compact and affordable.” Sensors are essential equipment in industrial settings such as wastewater treatment facilities and water sterilization units, where they are used to monitor the ozone concentration – firstly to ensure the required concentration for the relevant application is maintained, and secondly to guard against exceeding hazardous thresholds for humans.

Project manager Cimalla says: “The ozone sensors currently available on the market employ extremely laborious and complex measuring procedures such as UV absorption and are therefore very expensive. By contrast, the more affordable ozone sensors have to be heated up to 300 degrees Celsius and produce inaccurate readings or only work in limited areas of application. We’ve done away with the need for heating by instead applying blue/violet light radiation to trigger the chemical process necessary for regeneration on the sensor surface – this allows the sensors to operate at room temperature.” The scientists built on the existing knowledge that molecules absorbed on the surface of a sensing layer alter its electrical resistance – and can also be removed again by light irradiation.

The result is a highly-sensitive, miniaturized sensor capable of measuring the low ozone levels that occur in environmental and ambient air monitoring just as accurately as the high levels associated with industrial process control. And since the sensor is extremely small, it can even be integrated into mobile equipment.

Dr. Volker Cimalla | Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/january/ozone-detection.jsp

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>