Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone detection

18.01.2010
Researchers in Freiburg have developed a highly-sensitive, miniaturized mobile ozone sensor which can be used not only in air, but also in water and in the vicinity of explosive gases.

The Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg is developing improved chemical sensors that are not prohibitively expensive. One particularly important area of application involves the regular measurement of ozone content in air and other media.

This gas is a powerful oxidizing agent and can cause a wide range of symptoms in humans, including lacrimation, irritation of the mucous membranes in the mouth, throat, and bronchial tubes, headaches, coughing and even deterioration in lung function. The main sources of ozone pollution are industrial and transport emissions; particularly in warmer weather, these react with intensive UV radiation to form ground-level ozone.

But laser printers and copiers, machines so prevalent in modern-day offices, can also emit ozone. The European Commission has announced its intention to cut the guideline value for ozone in the air from the current level of 90 parts per billion to 60 parts per billion by 2010, and when this new regulation comes into force, there will be an increased demand for inexpensive ozone sensors.

But as project manager Dr. Volker Cimalla of the IAF explains: “Since ozone is, at the same time, an agent with high application potential, novel sensors are required, which have to be compact and affordable.” Sensors are essential equipment in industrial settings such as wastewater treatment facilities and water sterilization units, where they are used to monitor the ozone concentration – firstly to ensure the required concentration for the relevant application is maintained, and secondly to guard against exceeding hazardous thresholds for humans.

Project manager Cimalla says: “The ozone sensors currently available on the market employ extremely laborious and complex measuring procedures such as UV absorption and are therefore very expensive. By contrast, the more affordable ozone sensors have to be heated up to 300 degrees Celsius and produce inaccurate readings or only work in limited areas of application. We’ve done away with the need for heating by instead applying blue/violet light radiation to trigger the chemical process necessary for regeneration on the sensor surface – this allows the sensors to operate at room temperature.” The scientists built on the existing knowledge that molecules absorbed on the surface of a sensing layer alter its electrical resistance – and can also be removed again by light irradiation.

The result is a highly-sensitive, miniaturized sensor capable of measuring the low ozone levels that occur in environmental and ambient air monitoring just as accurately as the high levels associated with industrial process control. And since the sensor is extremely small, it can even be integrated into mobile equipment.

Dr. Volker Cimalla | Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/january/ozone-detection.jsp

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>