Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could Oysters be Used to Clean Up Chesapeake Bay?

24.01.2011
Chronic water quality problems caused by agricultural and urban runoff, municipal wastewater, and atmospheric deposition from the burning of fossil fuels leads to oxygen depletion, loss of biodiversity, and harmful algal blooms.

This nutrient pollution is prevalent in many coastal marine and estuarine ecosystems worldwide. Chesapeake Bay is the largest estuary in North America and although many efforts have been taken to improve its water quality, nutrient pollution still keeps it at unacceptable levels.

In a study funded by the U.S. Environmental Protection Administration and administered by the National Fish and Wildlife Foundation, biologists at Virginia Commonwealth University measured the nutrient removal capacity of the Eastern oyster, Crassostrea virginica.

Researchers found that an additional 2.5 cm of growth allowed a farmed oyster to remove 2.2 times the nutrients of a regular oyster. In fact, a large scale oyster farm harvesting 1 million of these 76 mm oysters can remove 132 kg of nitrogen, 19 kg of phosphorus, and 3,823 kg of carbon. The full study is available in the January/February 2011 issue of the Journal of Environmental Quality.

Oysters were a novel yet obvious choice to enhance the ecosystem’s water quality. They process nutrients while feeding on phytoplankton and then store the nutrients in their shells and tissue through a process known as bioassimilation. Although Chesapeake Bay is a natural habitat for the Eastern oyster, 99% of the native population has been lost. This prompted researchers to explore the use of commercial oyster farms.

Oysters were raised at two commercial-scale aquaculture sites in Chesapeake Bay as well as a site in Maryland and one in Virginia to represent two typical cultivation environments in the Bay. The nutrient contents of the tissues and shells of oysters of various sizes were measured.

According to Colleen Higgins of Virginia Commonwealth University, “Based on these results, it would take eight large-scale oyster farms harvesting one million (of these) 76 mm oysters per year to remove one ton of nitrogen from the Bay, providing managers with the ability to determine the practical implication of such an ecosystem service.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at www.agronomy.org/publications/jeq/abstracts/40/1/271.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>