Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen-separation membranes could aid in CO2 reduction

16.05.2012
It may seem counterintuitive, but one way to reduce carbon dioxide emissions to the atmosphere may be to produce pure carbon dioxide in powerplants that burn fossil fuels. In this way, greenhouse gases — once isolated within a plant — could be captured and stored in natural reservoirs, deep in Earth's crust.

Such "carbon-capture" technology may significantly reduce greenhouse gas emissions from cheap and plentiful energy sources such as coal and natural gas, and help minimize fossil fuels' contribution to climate change. But extracting carbon dioxide from the rest of a powerplant's byproducts is now an expensive process requiring huge amounts of energy, special chemicals and extra hardware.

Now researchers at MIT are evaluating a system that efficiently eliminates nitrogen from the combustion process, delivering a pure stream of carbon dioxide after removing other combustion byproducts such as water and other gases. The centerpiece of the system is a ceramic membrane used to separate oxygen from air. Burning fuels in pure oxygen, as opposed to air — a process known as oxyfuel combustion — can yield a pure stream of carbon dioxide.

The researchers have built a small-scale reactor in their lab to test the membrane technology, and have begun establishing parameters for operating the membranes under the extreme conditions found inside a conventional powerplant. The group's results will appear in the Journal of Membrane Sciences, and will be presented at the International Symposium on Combustion in August.

Ahmed Ghoniem, the Ronald C. Crane Professor of Engineering at MIT, says ceramic-membrane technology may be an inexpensive, energy-saving solution for capturing carbon dioxide.

"What we're working on is doing this separation in a very efficient way, and hopefully for the least price," Ghoniem says. "The whole objective behind this technology is to continue to use cheap and available fossil fuels, produce electricity at low price and in a convenient way, but without emitting as much CO2 as we have been."

Ghoniem's group is working with other colleagues at MIT, along with membrane manufacturers, to develop this technology and establish guidelines for scaling and implementing it in future powerplants. The research is in line with the group's previous work, in which they demonstrated a new technology called pressurized oxyfuel combustion that they have shown improves conversion efficiency and reduces fuel consumption.

Streaming pure oxygen

The air we breathe is composed mainly of nitrogen (78 percent) and oxygen (21 percent). The typical process to separate oxygen from nitrogen involves a cryogenic unit that cools incoming air to a temperature sufficiently low to liquefy oxygen. While the freezing technique produces a pure stream of oxygen, the process is expensive and bulky, and consumes considerable energy, which may sap a plant's power output.

Ghoniem says using ceramic membranes that supply the oxygen needed for the combustion process may operate much more efficiently, using less energy to produce pure oxygen and ultimately capture carbon dioxide. He envisions the technology's use both in new powerplants and as a retrofit to existing plants to reduce greenhouse gas emissions.

Ceramic membranes are selectively permeable materials through which only oxygen can flow. These membranes, made of metal oxides such as lanthanum and iron, can withstand extremely high temperatures — a big advantage when it comes to operating in the harsh environment of a powerplant. Ceramic membranes separate oxygen through a mechanism called ion transport, whereby oxygen ions flow across a membrane, drawn to the side of the membrane with less oxygen.

A two-in-one solution

Ghoniem and his colleagues built a small-scale reactor with ceramic membranes and studied the resulting oxygen flow. They observed that as air passes through a membrane, oxygen accumulates on the opposite side, ultimately slowing the air-separation process. To avert this buildup of oxygen, the group built a combustion system into their model reactor. They found that with this two-in-one system, oxygen passes through the membrane and mixes with the fuel stream on the other side, burning it and generating heat. The fuel burns the oxygen away, making room for more oxygen to flow through. Ghoniem says the system is a "win-win situation," enabling oxygen separation from air while combustion takes place in the same space.

"It turns out to be a clever way of doing things," Ghoniem says. "The system is more compact, because at the same place where we do separation, we also burn. So we're integrating everything, and we're reducing the complexity, the energy penalty and the economic penalty of burning in pure oxygen and producing a carbon dioxide stream."

The group is now gauging the system's performance at various temperatures, pressures and fuel conditions using their laboratory setup. They have also designed a complex computational model to simulate how the system would work at a larger scale, in a powerplant. They've found that the flow of oxygen across the membrane depends on the membrane's temperature: The higher its temperature on the combustion side of the system, the faster oxygen flows across the membrane, and the faster fuel burns. They also found that although the gas temperature may exceed what the material can tolerate, the gas flow acts to protect the membrane.

"We are learning enough about the system that if we want to scale it up and implement it in a powerplant, then it's doable," Ghoniem says. "These are obviously more complicated powerplants, requiring much higher-tech components, because they can much do more than what plants do now. We have to show that the [new] designs are durable, and then convince industry to take these ideas and use them."

Ghoniem's group includes research scientist Patrick Kirchen and graduate students James Hong and Anton Hunt, in collaboration with faculty at King Fahed University of Petroleum and Minerals (KFUPM) in Saudi Arabia. The research was funded by KFUPM and King Abdullah University of Science and Technology.

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>