Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen-separation membranes could aid in CO2 reduction

16.05.2012
It may seem counterintuitive, but one way to reduce carbon dioxide emissions to the atmosphere may be to produce pure carbon dioxide in powerplants that burn fossil fuels. In this way, greenhouse gases — once isolated within a plant — could be captured and stored in natural reservoirs, deep in Earth's crust.

Such "carbon-capture" technology may significantly reduce greenhouse gas emissions from cheap and plentiful energy sources such as coal and natural gas, and help minimize fossil fuels' contribution to climate change. But extracting carbon dioxide from the rest of a powerplant's byproducts is now an expensive process requiring huge amounts of energy, special chemicals and extra hardware.

Now researchers at MIT are evaluating a system that efficiently eliminates nitrogen from the combustion process, delivering a pure stream of carbon dioxide after removing other combustion byproducts such as water and other gases. The centerpiece of the system is a ceramic membrane used to separate oxygen from air. Burning fuels in pure oxygen, as opposed to air — a process known as oxyfuel combustion — can yield a pure stream of carbon dioxide.

The researchers have built a small-scale reactor in their lab to test the membrane technology, and have begun establishing parameters for operating the membranes under the extreme conditions found inside a conventional powerplant. The group's results will appear in the Journal of Membrane Sciences, and will be presented at the International Symposium on Combustion in August.

Ahmed Ghoniem, the Ronald C. Crane Professor of Engineering at MIT, says ceramic-membrane technology may be an inexpensive, energy-saving solution for capturing carbon dioxide.

"What we're working on is doing this separation in a very efficient way, and hopefully for the least price," Ghoniem says. "The whole objective behind this technology is to continue to use cheap and available fossil fuels, produce electricity at low price and in a convenient way, but without emitting as much CO2 as we have been."

Ghoniem's group is working with other colleagues at MIT, along with membrane manufacturers, to develop this technology and establish guidelines for scaling and implementing it in future powerplants. The research is in line with the group's previous work, in which they demonstrated a new technology called pressurized oxyfuel combustion that they have shown improves conversion efficiency and reduces fuel consumption.

Streaming pure oxygen

The air we breathe is composed mainly of nitrogen (78 percent) and oxygen (21 percent). The typical process to separate oxygen from nitrogen involves a cryogenic unit that cools incoming air to a temperature sufficiently low to liquefy oxygen. While the freezing technique produces a pure stream of oxygen, the process is expensive and bulky, and consumes considerable energy, which may sap a plant's power output.

Ghoniem says using ceramic membranes that supply the oxygen needed for the combustion process may operate much more efficiently, using less energy to produce pure oxygen and ultimately capture carbon dioxide. He envisions the technology's use both in new powerplants and as a retrofit to existing plants to reduce greenhouse gas emissions.

Ceramic membranes are selectively permeable materials through which only oxygen can flow. These membranes, made of metal oxides such as lanthanum and iron, can withstand extremely high temperatures — a big advantage when it comes to operating in the harsh environment of a powerplant. Ceramic membranes separate oxygen through a mechanism called ion transport, whereby oxygen ions flow across a membrane, drawn to the side of the membrane with less oxygen.

A two-in-one solution

Ghoniem and his colleagues built a small-scale reactor with ceramic membranes and studied the resulting oxygen flow. They observed that as air passes through a membrane, oxygen accumulates on the opposite side, ultimately slowing the air-separation process. To avert this buildup of oxygen, the group built a combustion system into their model reactor. They found that with this two-in-one system, oxygen passes through the membrane and mixes with the fuel stream on the other side, burning it and generating heat. The fuel burns the oxygen away, making room for more oxygen to flow through. Ghoniem says the system is a "win-win situation," enabling oxygen separation from air while combustion takes place in the same space.

"It turns out to be a clever way of doing things," Ghoniem says. "The system is more compact, because at the same place where we do separation, we also burn. So we're integrating everything, and we're reducing the complexity, the energy penalty and the economic penalty of burning in pure oxygen and producing a carbon dioxide stream."

The group is now gauging the system's performance at various temperatures, pressures and fuel conditions using their laboratory setup. They have also designed a complex computational model to simulate how the system would work at a larger scale, in a powerplant. They've found that the flow of oxygen across the membrane depends on the membrane's temperature: The higher its temperature on the combustion side of the system, the faster oxygen flows across the membrane, and the faster fuel burns. They also found that although the gas temperature may exceed what the material can tolerate, the gas flow acts to protect the membrane.

"We are learning enough about the system that if we want to scale it up and implement it in a powerplant, then it's doable," Ghoniem says. "These are obviously more complicated powerplants, requiring much higher-tech components, because they can much do more than what plants do now. We have to show that the [new] designs are durable, and then convince industry to take these ideas and use them."

Ghoniem's group includes research scientist Patrick Kirchen and graduate students James Hong and Anton Hunt, in collaboration with faculty at King Fahed University of Petroleum and Minerals (KFUPM) in Saudi Arabia. The research was funded by KFUPM and King Abdullah University of Science and Technology.

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

Innovative autonomous system for identifying schools of fish

20.06.2018 | Information Technology

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>