Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL technology raises bar, lowers cost for groundwater contaminant sensors

07.05.2010
Long-term continuous monitoring of groundwater where contaminants are present or suspected could be streamlined with a technology developed at the Department of Energy's Oak Ridge National Laboratory.

While laboratory-based technologies for analysis of water contaminants are time-consuming, labor-intensive and expensive, the method introduced in a paper published in Analytical Chemistry is eloquent. The system combines a membrane tube and an ion mobility analysis system, or analyzer, creating a single procedure for in-situ monitoring of chlorinated hydrocarbons in water.

"Our technology represents a low-cost yet highly accurate way to monitor contaminants in water and air," said Chemical Sciences Division researcher Jun Xu, the lead researcher for the project.

The proprietary system, called membrane-extraction ion mobility spectrometry, is a single compact device able to detect aqueous tetrachloroethylene and tricholoroethylene concentrations as low as 75 micrograms per liter with a monitoring duty cycle of three minutes. Xu noted that this technology would reduce the cost of long-term monitoring of contaminants in groundwater by up to 80 percent.

"Based on this technology, a field-deployable sensor can be made and you would no longer need to have someone take a groundwater sample from a well and ship it to a laboratory for testing," Xu said. "The ORNL sensor does all three of these tasks in one step and very quickly, saving money."

Groundwater monitoring, however, is just one example of the technology's capabilities. The sensor can also be configured to monitor well, tap or river water or other water suspected of having an undesirable or possibly illegal level of contamination. Also, additional membranes with different properties can be installed to enable collection of a wider variety of contaminants.

Co-authors of the paper, titled "Membrane-extraction ion mobility spectrometry for in situ detection of chlorinated hydrocarbons in water," are Yongzhai Du, Wei Zhang, William Whitten and David Watson of ORNL and Haiyang Li of the Dalian Institute of Chemical Physics, Chinese Academy of Science.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. Funding for this research was provided by the Strategic Environmental Research and Development Programs.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>