Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL scientists hone technique to safeguard water supplies

01.09.2009
A method to detect contaminants in municipal water supplies has undergone further refinements by two Oak Ridge National Laboratory researchers whose findings are published on line in Water Environment Research.

The new work demonstrates that the technology that uses algae as sentinels has broader applications than previously reported, according to authors Miguel Rodriguez Jr. and Elias Greenbaum of the Department of Energy's ORNL. For example, under real-world operating conditions, the sensitivity of the algae to toxins has a natural daily cycle that tracks the sun.

"When the sun is overhead and shining brightly, the algae are less sensitive to the toxins," Greenbaum said. "The new work shows that keeping the water sample in darkness for about 30 minutes prior to testing for toxins restores full sensitivity to the test."

The new results also show that the technology can be applied to many different water quality environments such as when the algae are starved for nutrients.

"Our key result is that despite real-world conditions that create challenges, free-living microalgae combined with 'work-around' strategies can be used as broad-spectrum automated biosensor systems for continuous monitoring of source drinking water," Greenbaum said.

The process uses a fluorometer to measure the fluorescence signal of algae that grow naturally in source water such as Tennessee's Clinch River, which was used in this study. Researchers exploit the known characteristics of Photosystems I and II, which convert light energy into chemical energy, to detect any changes in the process of photosynthesis.

"Recent advances in optoelectronics and portability make this a powerful technology for monitoring the in situ physiology of aquatic photosynthetic organisms such as green algae and cyanobacteria," the authors wrote. Even low levels of toxins alter fluorescence patterns within minutes.

Another significant aspect of this work is the reporting of statistically reliable data on the threshold detection levels for broad classes of toxins such as blood and nerve agents and agrochemicals. These levels are at or near Environmental Protection Agency regulatory guidelines, Greenbaum said.

For this study, the researchers looked at five classes of chemical agents in water: Diuron, atrazine, paraquat, methyl parathion and potassium cyanide. All are known to be harmful to human health. In the case of Diuron, used in agriculture for 50 years, Greenbaum and Rodriguez were able to detect 1 part per million. This was indicated by a 17 percent decline in the algae's Photosystem II efficiency.

"We have shown that microalgae in source drinking water can be used as broad-spectrum, robust sentinel sensors to detect relatively low concentrations of toxins," Greenbaum said. "We have also shown that the microalgae do not need to be in an optimized state for this technology to be effective."

This research was funded by the Department of Energy's Office of Biological and Environmental Research, the Defense Advanced Research Projects Agency and BAE Systems. Discussions for commercialization of this technology, to be marketed under the name AquaSentinel, are under way.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>