Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL scientists hone technique to safeguard water supplies

01.09.2009
A method to detect contaminants in municipal water supplies has undergone further refinements by two Oak Ridge National Laboratory researchers whose findings are published on line in Water Environment Research.

The new work demonstrates that the technology that uses algae as sentinels has broader applications than previously reported, according to authors Miguel Rodriguez Jr. and Elias Greenbaum of the Department of Energy's ORNL. For example, under real-world operating conditions, the sensitivity of the algae to toxins has a natural daily cycle that tracks the sun.

"When the sun is overhead and shining brightly, the algae are less sensitive to the toxins," Greenbaum said. "The new work shows that keeping the water sample in darkness for about 30 minutes prior to testing for toxins restores full sensitivity to the test."

The new results also show that the technology can be applied to many different water quality environments such as when the algae are starved for nutrients.

"Our key result is that despite real-world conditions that create challenges, free-living microalgae combined with 'work-around' strategies can be used as broad-spectrum automated biosensor systems for continuous monitoring of source drinking water," Greenbaum said.

The process uses a fluorometer to measure the fluorescence signal of algae that grow naturally in source water such as Tennessee's Clinch River, which was used in this study. Researchers exploit the known characteristics of Photosystems I and II, which convert light energy into chemical energy, to detect any changes in the process of photosynthesis.

"Recent advances in optoelectronics and portability make this a powerful technology for monitoring the in situ physiology of aquatic photosynthetic organisms such as green algae and cyanobacteria," the authors wrote. Even low levels of toxins alter fluorescence patterns within minutes.

Another significant aspect of this work is the reporting of statistically reliable data on the threshold detection levels for broad classes of toxins such as blood and nerve agents and agrochemicals. These levels are at or near Environmental Protection Agency regulatory guidelines, Greenbaum said.

For this study, the researchers looked at five classes of chemical agents in water: Diuron, atrazine, paraquat, methyl parathion and potassium cyanide. All are known to be harmful to human health. In the case of Diuron, used in agriculture for 50 years, Greenbaum and Rodriguez were able to detect 1 part per million. This was indicated by a 17 percent decline in the algae's Photosystem II efficiency.

"We have shown that microalgae in source drinking water can be used as broad-spectrum, robust sentinel sensors to detect relatively low concentrations of toxins," Greenbaum said. "We have also shown that the microalgae do not need to be in an optimized state for this technology to be effective."

This research was funded by the Department of Energy's Office of Biological and Environmental Research, the Defense Advanced Research Projects Agency and BAE Systems. Discussions for commercialization of this technology, to be marketed under the name AquaSentinel, are under way.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>