Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ORNL scientists hone technique to safeguard water supplies

A method to detect contaminants in municipal water supplies has undergone further refinements by two Oak Ridge National Laboratory researchers whose findings are published on line in Water Environment Research.

The new work demonstrates that the technology that uses algae as sentinels has broader applications than previously reported, according to authors Miguel Rodriguez Jr. and Elias Greenbaum of the Department of Energy's ORNL. For example, under real-world operating conditions, the sensitivity of the algae to toxins has a natural daily cycle that tracks the sun.

"When the sun is overhead and shining brightly, the algae are less sensitive to the toxins," Greenbaum said. "The new work shows that keeping the water sample in darkness for about 30 minutes prior to testing for toxins restores full sensitivity to the test."

The new results also show that the technology can be applied to many different water quality environments such as when the algae are starved for nutrients.

"Our key result is that despite real-world conditions that create challenges, free-living microalgae combined with 'work-around' strategies can be used as broad-spectrum automated biosensor systems for continuous monitoring of source drinking water," Greenbaum said.

The process uses a fluorometer to measure the fluorescence signal of algae that grow naturally in source water such as Tennessee's Clinch River, which was used in this study. Researchers exploit the known characteristics of Photosystems I and II, which convert light energy into chemical energy, to detect any changes in the process of photosynthesis.

"Recent advances in optoelectronics and portability make this a powerful technology for monitoring the in situ physiology of aquatic photosynthetic organisms such as green algae and cyanobacteria," the authors wrote. Even low levels of toxins alter fluorescence patterns within minutes.

Another significant aspect of this work is the reporting of statistically reliable data on the threshold detection levels for broad classes of toxins such as blood and nerve agents and agrochemicals. These levels are at or near Environmental Protection Agency regulatory guidelines, Greenbaum said.

For this study, the researchers looked at five classes of chemical agents in water: Diuron, atrazine, paraquat, methyl parathion and potassium cyanide. All are known to be harmful to human health. In the case of Diuron, used in agriculture for 50 years, Greenbaum and Rodriguez were able to detect 1 part per million. This was indicated by a 17 percent decline in the algae's Photosystem II efficiency.

"We have shown that microalgae in source drinking water can be used as broad-spectrum, robust sentinel sensors to detect relatively low concentrations of toxins," Greenbaum said. "We have also shown that the microalgae do not need to be in an optimized state for this technology to be effective."

This research was funded by the Department of Energy's Office of Biological and Environmental Research, the Defense Advanced Research Projects Agency and BAE Systems. Discussions for commercialization of this technology, to be marketed under the name AquaSentinel, are under way.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>