Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL-led team advances science of carbon accounting

07.03.2012
Determining with precision the carbon balance of North America is complicated, but researchers at Oak Ridge National Laboratory have devised a method that considerably advances the science.

In developing their approach, a team led by Daniel Hayes of the Department of Energy's ORNL took advantage of inventory records from the United States, Canada and Mexico that track changes in the amount of carbon in various reservoirs such as plants, soils and wood.

From these data, they made estimates of the current rate of atmospheric carbon dioxide sequestration over North America. This allowed researchers to calculate the state of the science in determining North America's carbon balance.

"Our results highlight both consistencies and mismatches among methods for quantifying sources and sinks of CO2 at sub-national scales and across different sectors such as forest, crop and other lands," Hayes said. "Depending on the approach, estimates suggest that the land-based sink offsets approximately 20 to 50 percent of total continental fossil fuel emissions."

The researchers noted that land and ocean sinks – which are sequestering carbon about equal amounts of carbon globally – are neither permanent nor fixed. Whether they continue to operate is a research question with critical implications. Hayes and colleagues found that much of the current carbon sequestration in North America is associated with the forest sector in the Northwest and Southeast.

"North American land ecosystems are thought to act as a relatively large sink for atmospheric CO2 , but both its current magnitude and response of this sink to future conditions are highly uncertain," Hayes said. The role played by North America is considerable as it may be responsible for up to a third of the combined global land and ocean sink of atmospheric CO2.

That ability to sequester carbon, however, may change given the influences of drought, wildfires and insect outbreaks that lead to carbon losses.

At odds in the carbon balance equation are the two most common assessment approaches – based on either top-down or bottom-up perspectives. From the top-down perspective, atmospheric models typically estimate much greater sink strength than bottom-up, or land ecosystem models. The inventory-based estimate is lower still than the average land model.

Each approach has strengths and weaknesses, and they all have substantial uncertainties. Modeling approaches are the primary tool available for making climate projections, but these rely on a large number of complicated and often poorly understood processes. Models are mainly based on physical, chemical and biological principles whereas inventories can track things like the movement of carbon in food and wood products that are influenced by social and economic factors.

Inventory methods like those used for this study have the benefit of extensive and repeated measurements yet there are many processes thought to be important that go unmeasured.

"You can't measure everything everywhere all of the time, especially in the future," Hayes said, "so we need models to fill in the gaps."

Scientists continue research to address knowledge gaps and uncertainties in each of these approaches.

"Ultimately, confidence in our ability to understand and predict the role of the North America carbon cycle in the global climate system will increase as new estimates from these different approaches begin to more closely converge and are combined in more fully integrated monitoring systems," Hayes said.

While there is still a huge range in estimates of CO2 sources and sinks, this paper, published today in the journal Global Change Biology, represents a major step toward reconciliation of the global carbon cycle. This could be especially relevant to policymakers.

"Efforts to establish atmospheric stabilization targets for CO2 emissions need accurate and reliable estimates of the global carbon budget," Hayes said.

The paper, titled "Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmosphere inversions, and a new approach for estimating net ecosystem exchange from inventory-based data," is available here: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.02627.x/abstract

Co-authors from ORNL are Yaxing Wei, Mac Post and Robert Cook. Other authors include scientists from Oregon State University; the Canadian Forest Service; the U.S. Geological Survey; Pacific Northwest National Laboratory; the USDA Forest Service; El Colegio de la Frontera Sur, Mexico; Agriculture and Agri-Food Canada; and the National Oceanic and Atmospheric Administration.

This research was supported by multiple sources, including DOE's Office of Science, a Department of Agriculture grant and NASA's New Investigator Program and the Terrestrial Ecology Program. UT-Battelle manages ORNL for DOE's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>