Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is organic farming good for wildlife? – It depends on the alternative...

07.09.2010
Even though organic methods may increase farm biodiversity, a combination of conventional farming and protected areas could sometimes be a better way to maintain food production and protect wildlife.

The findings come from a study of butterfly populations in UK landscapes by scientists at the Universities of Leeds and York. They found that organic farms have more butterflies than conventional farms, but that a conventional farm plus an area specifically managed for wildlife could support more butterflies, and produce the same amount of food, from the same area of land. However, the wildlife area would have to be similar in quality to a nature reserve, rather than similar to an uncultivated field margin.

The study is the first to seek to establish the trade-off between the most efficient use of farmland and the most effective way to conserve wildlife in our countryside and has important implications for how agricultural land in the UK should be managed.

The research, which involved scientists from the Institute of Integrative and Comparative Biology, at the University of Leeds, and the Department of Biology at the University of York, is published in the online edition of Ecology Letters.

Author Professor Bill Kunin of the University of Leeds says: "It’s not enough to know how much biodiversity an agricultural field supports, we also need to know how much food it produces. If 'sharing' our farmland with wildlife means that more total land will be taken into production to produce our food, then there may be a hidden cost of hurting wildlife somewhere else."

The scientists measured the density and numbers of species of butterflies in organic farms, conventional farms and grassland nature reserves in 16 locations in the South of England, the Midlands and Yorkshire. They used butterflies as a wildlife example because of their sensitivity to small-scale habitat change, and focused on winter cereal and pasture fields because they are among the commonest crops.

The team project that a combination of conventional farming and nature reserves would be better for butterflies if the organic yield per hectare falls below 87 per cent of conventional yield. But if the uncultivated land is not specifically managed for wildlife – being more like unmanaged field margins – organic farming would be better whenever organic yields rise above 35 per cent of conventional yields. The relative yield of organic farming is often somewhere between 35 per cent and 87 per cent of conventional yield, depending on the type of crop and landscape. The trade-off might also be different for other types of wildlife: for example wildflowers benefit more from organic farming than butterflies, and many birds do not benefit at all. The results suggest that organic farming will be better when organic yields are high and when spared land has low value to wildlife. Conventional farming will be better when organic yields are low and spared land is of high wildlife value.

Lead author, Dr Jenny Hodgson, of the Department of Biology at York, said: "This research raises questions about how agri-environment schemes and incentives could be improved. There could be much more scope for restoring and maintaining permanent, high-quality wildlife habitat. This might involve neighbouring farmers clubbing together to achieve a larger area of restored habitat, or setting up a partnership with a conservation organisation."

Author Professor Tim Benton highlights the fact that "More effective agri-environment methods will strengthen the case for conventional farming. The real challenge is to develop better ways to manage AES areas on conventional farms, so they can come closer to nature reserve standards. The spared land could be in nature reserves, but if properly managed, the spared land could also be in strips at the margins of fields."

One premise of this study was that we aim to maintain food yield and wildlife in the UK countryside, and that these cannot be traded off with food or wildlife further afield. However, in reality the situation is much more complicated.

Author Professor Chris Thomas, of the University of York says: "It is hard to work out the best strategies to minimise the environmental impact of producing food in a global context. For example, if we adopt a low-intensity farming strategy in Europe, European citizens won’t starve; we will simply import more food from other countries. This will potentially increase the area of land under cultivation, or the intensity of cultivation, in other countries, and hence accelerate biodiversity losses elsewhere in the world."

The research was supported by UKPopNet, the British Ecological Society and the University of Leeds. The fieldwork was conducted on a sample of farms selected from a study supported by the Rural Economy and Land Use Programme (RELU).

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

Further reports about: nature reserve organic farming synthetic biology

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>