Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon's Rogue River Basin to Face Climate-Change Hurdles

17.12.2008
Three major global climate-change projections scaled down to Oregon's Rogue River Basin point to hotter, drier summers with increasing wildfire risk, reduced snowpack and rainier, stormy winters, according to a report coordinated by the University of Oregon’s Climate Leadership Initiative and the National Center for Conservation Science & Policy.

Among the report's recommendations: a gradual relocation of structures and people from areas at most risk of flash flooding and wildfires and a call for governments, private firms and households to prioritize and cooperatively pursue strategies and policies to prepare for the changes.

"Preparing for Climate Change in the Rogue River Basin of Southwest Oregon" is the first of four such reports that, authors say, represent the first such comprehensive scaling down of global models to specific river basins in the United States. The three models involved (Hadley, CSIRO and MIROC) are used by the Intergovernmental Panel on Climate Change, a scientific intergovernmental body established in 1988 by the World Meteorological Organization and United Nations Environment Programme.

Many buildings and infrastructure in the Rogue basin are in flood plains, while many rural populations reside year-round in narrow and steeply sloped canyons. Storms and other climate stresses, the report concludes, could threaten millions of dollars in direct costs and five to 10 times that in indirect costs. There currently are a total of $21.5 billion in taxable properties in Josephine and Jackson counties alone, although not all are considered in harm's way.

At a policy level, the report urges governments to work with collaborative mindsets. It also will be important that climate preparation become a priority and that any proposed solutions also consider potential impacts on other sectors to assure continued vitality for the region's population centers and economies. The report focuses on conditions projected for 2040 and 2080.

"Our research found that climate change will significantly stress the natural environment of the Rogue basin," said Bob Doppelt, director of the Climate Leadership Initiative. "These changes will, in turn, have important consequences for the economy, social welfare and quality-of-life in the region. Proactive steps to prepare for climate change should become a priority for every government, private company and household in the basin."

A bottom line for the Rogue basin, Doppelt said, is that: "It is going to transition into an area that, for comparison purposes, could seem similar to Sacramento, Calif. It gets very hot and very dry there in the summer months." Urban areas at risk include Ashland, Medford, Central Point, Grants Pass and Cave Junction.

A brief preliminary presentation of the report on Dec. 3 was well received by the Rogue Valley Council of Governments, said Craig Harper, manager of the council's natural resources department. The council co-sponsored the Dec. 16 official release of the report in Medford, Ore.

"Rogue basin communities must take the necessary steps to learn how to cope with the effects of climate change, and to develop the systems that will allow them to recover from its impacts," Harper said. "Our region is resilient and strong, but to remain so we must begin to respond to these coming changes."

Forthcoming reports will cover Oregon's Upper Willamette, Klamath and Umatilla river basins. The four documents are being prepared by the UO's Climate Leadership Initiative and the Ashland, Ore.,-based National Center for Conservation Science & Policy in partnership with the U.S. Forest Service Pacific Northwest Research Station through its Mapped Atmosphere-Plant-Soil System (MAPSS) Team. The reports incorporate findings and recommendations of separate panels of scientists, land managers and policy experts.

Widespread risk to industry, species and economies

Agriculture may be hard hit in the Rogue basin, including vineyards that produce much of Oregon's famous Pinot Noir wine. Pear crops, already are sensitive to temperature variations, also will be at risk, said co-author Roger Hamilton, government program manager for UO's Climate Leadership Initiative. These crops, he said, "may need to move toward the coast or northward."

As projected average temperatures in the Rogue basin rise 1-3 degrees Fahrenheit by 2040 and 4-8 degrees by 2080 -- and summers heat up 7-15 degrees by 2080 -- dramatic impacts are possible for fisheries, forestry, agriculture, hydroelectric power generation, transportation systems (road infrastructure and fuel costs) and water quality, the report concludes. Another major issue will be public health and emergency services, especially in at-risk areas.

A copy of the full report is available at: http://tinyurl.com/5b7fre

“The global climate models forecast increased precipitation at high latitudes and decreased precipitation at desert latitudes," said Ron Neilson of the USFS Pacific Northwest Research Station MAPSS program. "The Rogue River Basin falls directly in the transition between these two major global bands, rendering future forecasts of precipitation highly uncertain. Most importantly, the models forecast increased severity and variability of precipitation events, particularly in the Rogue basin transition zone between the wet north and the dry subtropics. More severe and variable weather might mean longer and deeper droughts, as well as longer and more severe floods.”

Science panelists addressed the restoration and maintenance of floodplains and fisheries, including the survivability of salmon, steelhead and other native species, as well as protection measures for forests and forest wildlife species. At risk to wildfires will be Port Orford Cedar and Brewer's Spruce, which are relics from the last ice age, as well as the Marbled Murrelet, an already threatened coastal seabird that nests in old-growth forests, Spotted Owl and fisher, the report noted. High-elevation changes also will threaten other bird species and native vegetation.

Policy and land-management panelists focused on the implications to economic systems, including those related to the timber and agricultural industries, the relocation of structures and human populations, changes necessary to maintain transportation systems, alternative energy sources such as solar and high-efficiency thermal biomass, water allocation and groundwater use, emergency management and ramifications for public health.

The consistent theme of the panels' recommendations was the call integrated governmental efforts. Specifically, the report calls for plans and policies that focus on a "future range of variability" rather than the long-held approach of management based on historic patterns. It also calls for "expanded planning and decision-making to the landscape level rather than planning at the forest, county, city or project levels in isolation from other regions or interests."

"Society's challenge is two-fold," said Cindy Deacon Williams, senior scientist for the National Center for Conservation Science & Policy. "We not only must reduce our emissions, we also must prepare for the climate impacts already on the way. Even if emissions are successfully reduced, it will take 50 to 100 years for the climate to stabilize. During that time we are likely to see significant consequences in the Rogue basin. Communities need to start taking action now to prepare for those impacts."

Doppelt, Hamilton, Williams and Marni Koopman, a climate scientist with the National Center for Conservation Science & Policy wrote the final report.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.
About the National Center for Conservation Science & Policy
The National Center for Conservation Science & Policy is a non-profit conservation science and policy organization working to bridge the gap between sound conservation science and natural resource policy. The National Center translates conservation science for community and government leaders to ensure that policy decisions are based on the best available science.
Sources:
• Bob Doppelt, director, Climate Leadership Initiative, University of Oregon's Institute for Sustainable Environment, 541-346-0687, bdoppelt@uoregon.edu
• Roger Hamilton, government program manager, Climate Leadership Initiative, University of Oregon's Institute for Sustainable Environment, 541-346-1608, grh@uoregon.edu
• Cindy Deacon Williams, senior scientist, National Center for Conservation Science & Policy, 541-601-4737, cdwill@medford.net
• Ron Neilson, bioclimatologist, U.S. Forest Service Pacific Northwest Research Station MAPSS program, Corvallis, 541-750-7303, rneilson@fs.fed.us

• Craig Harper, manager, department of natural resources, Rogue Valley Council of Governments, 541-423-1369, charper@rvcob.org

Links: UO Climate Leadership Initiative: http://climlead.uoregon.edu/; UO Institute for a Sustainable Environment: http://www.uoregon.edu/~enviro/; National Center for Conservation Science & Policy: http://www.nccsp.org/; U.S. Forest Service Pacific Northwest Research Station MAPSS: http://www.fs.fed.us/pnw/mdr/mapss/index.shtml; Rogue Valley Council of Governments: http://www.rvcog.org/; a PDF copy of the report: http://tinyurl.com/5b7fre; and a PDF copy of the report's appendix, with graphics: http://tinyurl.com/5phw2u

Jim Barlow | Newswise Science News
Further information:
http://www.uoregon.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>