Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orange appeal to clean up dirty water

21.10.2008
Highly colored industrial waste water is a serious environmental problem as it seriously discolors waterways as well as blocking sunlight for photosynthesizing plant species in the water.

Now, researchers in Algeria have discovered that nothing more sophisticated than orange peel could be used to remove acidic dyes from industrial effluent. They describe their findings in a forthcoming issue of the International Journal of Environment and Pollution.

"Synthetic dyes are extensively used by industries including dye houses, paper printers, textile dyers, color photography and as additives in petroleum products," explains Benaïssa Houcine of the Laboratory of Sorbent Materials and Water Treatment, Department of Chemistry-Faculty of Sciences, at University of Tlemcen, in Algeria. "The effluents of these industries are highly colored, and disposal of these wastes into the environment can be extremely deleterious. Their presence in watercourses is aesthetically unacceptable and may be visible at concentration as low as 1 ppm (part per million).

In searching for an alternative to chemical treatment of waste water, Benaïssa has considered a common agricultural and food industry byproduct, orange peel. He has now tested waste orange peel as an absorbent for the removal of four acid dyes from simulated samples of polluted water.

The research demonstrates that absorption time depends on the initial concentration of the dyes as well as the chemical structures of the particular dyes being tested, but absorption can occur at just 25 Celsius rather than elevated temperatures. However, strong dyes including Nylosane Blue, Erionyl Yellow, Nylomine Red, and Erionyl Red were absorbed at between 40 and 70 milligrams per gram of orange peel from the samples.

"In laboratory-scale studies, the data show that orange peel has a considerable potential for the removal of dyes from aqueous solutions over a wide range of concentrations," Benaïssa says. "Orange peel may be used as a low-cost, natural and abundant source for the removal of dyes, and it may be an alternative to more costly materials. It may also be effective in removing other harmful or undesirable species present in the waste effluents."

Additional research is now needed in order to optimize and scale-up the process for the real-world clean-up of dye effluent. This will involve identifying the biochemical sites within the orange peel to which the dye molecules stick during absorption.

Benaïssa Houcine | EurekAlert!
Further information:
http://www.inderscience.com

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>