Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orange appeal to clean up dirty water

21.10.2008
Highly colored industrial waste water is a serious environmental problem as it seriously discolors waterways as well as blocking sunlight for photosynthesizing plant species in the water.

Now, researchers in Algeria have discovered that nothing more sophisticated than orange peel could be used to remove acidic dyes from industrial effluent. They describe their findings in a forthcoming issue of the International Journal of Environment and Pollution.

"Synthetic dyes are extensively used by industries including dye houses, paper printers, textile dyers, color photography and as additives in petroleum products," explains Benaïssa Houcine of the Laboratory of Sorbent Materials and Water Treatment, Department of Chemistry-Faculty of Sciences, at University of Tlemcen, in Algeria. "The effluents of these industries are highly colored, and disposal of these wastes into the environment can be extremely deleterious. Their presence in watercourses is aesthetically unacceptable and may be visible at concentration as low as 1 ppm (part per million).

In searching for an alternative to chemical treatment of waste water, Benaïssa has considered a common agricultural and food industry byproduct, orange peel. He has now tested waste orange peel as an absorbent for the removal of four acid dyes from simulated samples of polluted water.

The research demonstrates that absorption time depends on the initial concentration of the dyes as well as the chemical structures of the particular dyes being tested, but absorption can occur at just 25 Celsius rather than elevated temperatures. However, strong dyes including Nylosane Blue, Erionyl Yellow, Nylomine Red, and Erionyl Red were absorbed at between 40 and 70 milligrams per gram of orange peel from the samples.

"In laboratory-scale studies, the data show that orange peel has a considerable potential for the removal of dyes from aqueous solutions over a wide range of concentrations," Benaïssa says. "Orange peel may be used as a low-cost, natural and abundant source for the removal of dyes, and it may be an alternative to more costly materials. It may also be effective in removing other harmful or undesirable species present in the waste effluents."

Additional research is now needed in order to optimize and scale-up the process for the real-world clean-up of dye effluent. This will involve identifying the biochemical sites within the orange peel to which the dye molecules stick during absorption.

Benaïssa Houcine | EurekAlert!
Further information:
http://www.inderscience.com

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>