Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Orange appeal to clean up dirty water

Highly colored industrial waste water is a serious environmental problem as it seriously discolors waterways as well as blocking sunlight for photosynthesizing plant species in the water.

Now, researchers in Algeria have discovered that nothing more sophisticated than orange peel could be used to remove acidic dyes from industrial effluent. They describe their findings in a forthcoming issue of the International Journal of Environment and Pollution.

"Synthetic dyes are extensively used by industries including dye houses, paper printers, textile dyers, color photography and as additives in petroleum products," explains Benaïssa Houcine of the Laboratory of Sorbent Materials and Water Treatment, Department of Chemistry-Faculty of Sciences, at University of Tlemcen, in Algeria. "The effluents of these industries are highly colored, and disposal of these wastes into the environment can be extremely deleterious. Their presence in watercourses is aesthetically unacceptable and may be visible at concentration as low as 1 ppm (part per million).

In searching for an alternative to chemical treatment of waste water, Benaïssa has considered a common agricultural and food industry byproduct, orange peel. He has now tested waste orange peel as an absorbent for the removal of four acid dyes from simulated samples of polluted water.

The research demonstrates that absorption time depends on the initial concentration of the dyes as well as the chemical structures of the particular dyes being tested, but absorption can occur at just 25 Celsius rather than elevated temperatures. However, strong dyes including Nylosane Blue, Erionyl Yellow, Nylomine Red, and Erionyl Red were absorbed at between 40 and 70 milligrams per gram of orange peel from the samples.

"In laboratory-scale studies, the data show that orange peel has a considerable potential for the removal of dyes from aqueous solutions over a wide range of concentrations," Benaïssa says. "Orange peel may be used as a low-cost, natural and abundant source for the removal of dyes, and it may be an alternative to more costly materials. It may also be effective in removing other harmful or undesirable species present in the waste effluents."

Additional research is now needed in order to optimize and scale-up the process for the real-world clean-up of dye effluent. This will involve identifying the biochemical sites within the orange peel to which the dye molecules stick during absorption.

Benaïssa Houcine | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>