Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical Analyses: More Efficient Biogas Facilities

12.07.2011
Siemens is developing optical measuring techniques that will enable more precise control of biogas facilities in order to increase their efficiency.

When biomass is fermented to produce methane, acids are created, and if the acid concentration gets too high, the process collapses and the facility has to be cleaned and started up again.


Operators currently check the chemistry within the tanks by taking random samples every few days and sending them to a lab for analysis. By contrast, the new technique developed by Siemens researchers at Corporate Technology directly measures the acid content within the fermenter.

This eliminates the risk of unexpectedly high levels of acidity, thus allowing the facilities to operate at full capacity. Experts estimate that this can increase the energy yield by five to ten percent. Following successful lab tests, Siemens is now planning to launch a pilot project, as reported in the latest issue of the research magazine "Pictures of the Future".

Biogas facilities contain bacteria that turn organic materials such as corn, wood, and manure into methane gas. This process initially produces various acids which are broken down to methane during subsequent reaction stages. If too much acid is generated too quickly, the efficiency of the methane production process declines. Even less acid is broken down as a result, causing the entire process to shut down. Facility operators can prevent the creation of too much acid by adding appropriate types of biomass such as wood, which is resistant to biodegradation.

However, the facilities are most efficient when they operate near maximum capacity. But because they don’t know how much acid is in the fermenter at any one time, many operators run the facilities at a level far below that at which the system could break down, accepting losses of up to €100,000 in the process. This problem can be solved with the help of infrared spectroscopy. Molecules produce characteristic light spectra when irradiated with infrared light.

These spectra provide information about the chemical bonds, from which the presence of certain elements or chemical groups can be deduced. The device developed by Siemens measures the fermenter’s acid content by shining infrared light through a glass window. The researchers are also developing a method for testing the quality of the biomass so that the facility can be fed in a more targeted manner.

Facility control techniques play a major role in making bioelectricity generation competitive. Over four percent of the electricity produced in Germany today is being generated by more than 5,000 biogas facilities. According to experts, the number of facilities will double by 2020.

Dr. Norbert Aschenbrenner | Siemens ResearchNews
Further information:
http://www.siemens.com/researchnews

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>