Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An online global map of coral and zooxanthellae data for climate change study is released

27.10.2011
A team of researchers from the Hawai'i Institute of Marine Biology (HIMB) have developed an interactive global map of corals and zooxanthellae as part of a hybrid web application titled GeoSymbio.

This application provides global-scale biological and ecosystem information on symbiotic zooxanthellae called Symbiodinium which are uni-cellular, photosynthetic dinoflagellates that live inside the cells of other marine organisms like anemones, jellyfish, and corals.

Symbiodinium are responsible for providing energy to their coral hosts which drives the deposition of calcium carbonate and results in the creation of coral reefs. The differential responses of corals and Symbiodinium types to environmental stressors have important implications for the resiliency of coral reef ecosystems to climate change. Dr. Tim McClanahan, Senior Conservation Zoologist for the Wildlife Conservation Society, stated that, "Given the pace of climate change and scientific developments around

Symbiodinium, GeoSymbio will catalyze the use of this knowledge towards increasing reef resilience and improved management decisions".

The genus Symbiodinium encompasses nine distinct genetic lineages or clades, with many sub-cladal types within each clade. The GeoSymbio application provides the genetic identification and taxonomic description of over 400 distinct Symbiodinium subclades in invertebrate hosts that have been sampled from a variety of marine habitats, thereby providing a wealth of information for symbiosis researchers in a single online location. By utilizing Google Apps, the team was able to develop this web-based tool to discover, explore, visualize, and share data in a rapid, cost-effective, and engaging manner.

GeoSymbio is the first comprehensive effort to collate and visualize Symbiodinium ecology, diversity, and geography in an online web application that is freely accessible and searchable by the public. To provide access to this information, GeoSymbio was designed to serve four basic functions: (1) geospatial visualization, (2) text-based queries, (3) knowledge summaries, and (4) downloadable data products for further analyses. The application structure draws information from a variety of digital sources and uses a suite of query and visualization tools, with the core of the application hosted remotely or "in the cloud" using Google Sites.

The application's development began in early 2011, when the HIMB researchers were tasked with compiling global data on coral-based Symbiodinium for analysis, as part of the "Tropical Coral Reefs of the Future" working group at the National Center for Ecological Analysis and Synthesis (NCEAS). In previous years, the team had created a database with approximately 2500 records of these Symbiodinium data from sources such as GenBank (the primary repository for Symbiodinium and all other organisms' genetic sequence information) and journal articles, however, the information was only accessible within the research group. This changed in 2011 when the research team decided to create and share a low-cost, integrative web application based on the symbiont database.

Erik Franklin, one of the lead developers of the project is excited about the product that he recently presented at the Environmental Information Management 2011 Conference. He stated that: "building the capacity to examine the diversity of Symbiodinium on coral reefs has global and societal implications for tropical nations and thus, the dissemination of this information is essential. One of the major barriers to progress was that the geographic details of the Symbiodinium records were not documented well in existing databases, and our GeoSymbio app now resolves this problem and provides open data sharing". GeoSymbio provides the first and only web-based application for data discovery, visualization, and sharing of global-scale Symbiodinium research. This tool should expedite new insights into their ecology, biogeography, and evolution in the face of a changing global climate.

Carlie Wiener | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>