Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil spills raise arsenic levels in the ocean, says new research

05.07.2010
Oil spills can increase levels of toxic arsenic in the ocean, creating an additional long-term threat to the marine ecosystem, according to research published today in the journal Water Research.

Arsenic is a poisonous chemical element found in minerals and it is present in oil. High levels of arsenic in seawater can enable the toxin to enter the food chain. It can disrupt the photosynthesis process in marine plants and increase the chances of genetic alterations that can cause birth defects and behavioural changes in aquatic life. It can also kill animals such as birds that feed on sea creatures affected by arsenic.

In today's study, a team from Imperial College London has discovered that oil spills can partially block the ocean's natural filtration system and prevent this from cleaning arsenic out of the seawater. The researchers say their study sheds light on a new toxic threat from the Gulf of Mexico oil leak.

Arsenic occurs naturally in the ocean, but sediments on the sea floor filter it out of seawater, which keeps the levels of naturally occurring arsenic low. However, arsenic is also flushed into the ocean in wastewater from oil rigs and from accidental oil spills and leakages from underground oil reservoirs.

In the study, the researchers discovered that oil spills and leakages clog up sediments on the ocean floor with oil, which prevents the sediments from bonding with arsenic and burying it safely underground with subsequent layers of sediment. The scientists say this shutdown of the natural filtration system causes arsenic levels in seawater to rise, which means that it can enter the marine ecosystem, where it becomes more concentrated and poisonous the further it moves up the food chain.

The scientists say their work demonstrates how the chemistry of sediments in the Gulf of Mexico may be affected by the current oil leak. Professor Mark Sephton, from the Department of Earth Science and Engineering at Imperial College London, says:

"We can't accurately measure how much arsenic is in the Gulf at the moment because the spill is ongoing. However, the real danger lies in arsenic's ability to accumulate, which means that each subsequent spill raises the levels of this pollutant in seawater. Our study is a timely reminder that oil spills could create a toxic ticking time bomb, which could threaten the fabric of the marine ecosystem in the future."

Wimolporn Wainipee, postgraduate and lead author of the study from the Department of Earth Science and Engineering at Imperial College London, adds:

"We carried out our study before the leak in the Gulf of Mexico occurred, but it gives us a big insight into a potential new environmental danger in the region. Thousands of gallons of oil are leaked into the world's oceans every year from big spills, offshore drilling and routine maintenance of rigs, which means many places may be at risk from rising arsenic levels, which could in the long run affect aquatic life, plants and the people who rely on the oceans for their livelihoods."

For their research, the team analysed a mineral called goethite, one of the most abundant ocean sediments in the world, which is an iron bearing oxide.

The team carried out experiments in the laboratory that mimicked conditions in the ocean, to see how the goethite binds to arsenic under natural conditions. They discovered that seawater alters the chemistry of goethite, where low pH levels in the water create a positive change on the surface of goethite sediments, making them attractive to the negatively charged arsenic.

However, the scientists discovered that when they added oil, this created a physical barrier, covering the goethite sediments, which prevented the arsenic in the oil from binding to them. The team also found that the oil changed the chemistry of the sediments, which weakened the attraction between the goethite and arsenic.

In the future, the researchers plan to analyse other minerals such as clays and carbonates that are sediments on the ocean floor. Sediment content varies from ocean to ocean and the researchers will analyse how oil affects their ability to bind to arsenic after a spill.

For further information please contact:
Colin Smith
Press Officer
Imperial College London
Email: cd.smith@imperial.ac.uk
Tel: +44 (0)207 594 6712
Out of hours duty press officer: +44 (0)7803 886 248
Notes to editors:
1."The effect of crude oil on arsenate adsorption on goethite" Water Research journal, Friday 2 July 2010 (published in hardcopy)

The full listing of authors and their affiliations for this paper is as follows:

(1) Wimolporn Wainipee, (1) Dominik J. Weiss, (1) Mark A. Sephton, (1) Barry J. Coles , (1) Richard Court, (2) Catherine Unsworth,
(1) Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK

(2) Natural History Museum, Department of Mineralogy, London, SW7 5BD, UK

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Colin Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>