Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil spills raise arsenic levels in the ocean, says new research

05.07.2010
Oil spills can increase levels of toxic arsenic in the ocean, creating an additional long-term threat to the marine ecosystem, according to research published today in the journal Water Research.

Arsenic is a poisonous chemical element found in minerals and it is present in oil. High levels of arsenic in seawater can enable the toxin to enter the food chain. It can disrupt the photosynthesis process in marine plants and increase the chances of genetic alterations that can cause birth defects and behavioural changes in aquatic life. It can also kill animals such as birds that feed on sea creatures affected by arsenic.

In today's study, a team from Imperial College London has discovered that oil spills can partially block the ocean's natural filtration system and prevent this from cleaning arsenic out of the seawater. The researchers say their study sheds light on a new toxic threat from the Gulf of Mexico oil leak.

Arsenic occurs naturally in the ocean, but sediments on the sea floor filter it out of seawater, which keeps the levels of naturally occurring arsenic low. However, arsenic is also flushed into the ocean in wastewater from oil rigs and from accidental oil spills and leakages from underground oil reservoirs.

In the study, the researchers discovered that oil spills and leakages clog up sediments on the ocean floor with oil, which prevents the sediments from bonding with arsenic and burying it safely underground with subsequent layers of sediment. The scientists say this shutdown of the natural filtration system causes arsenic levels in seawater to rise, which means that it can enter the marine ecosystem, where it becomes more concentrated and poisonous the further it moves up the food chain.

The scientists say their work demonstrates how the chemistry of sediments in the Gulf of Mexico may be affected by the current oil leak. Professor Mark Sephton, from the Department of Earth Science and Engineering at Imperial College London, says:

"We can't accurately measure how much arsenic is in the Gulf at the moment because the spill is ongoing. However, the real danger lies in arsenic's ability to accumulate, which means that each subsequent spill raises the levels of this pollutant in seawater. Our study is a timely reminder that oil spills could create a toxic ticking time bomb, which could threaten the fabric of the marine ecosystem in the future."

Wimolporn Wainipee, postgraduate and lead author of the study from the Department of Earth Science and Engineering at Imperial College London, adds:

"We carried out our study before the leak in the Gulf of Mexico occurred, but it gives us a big insight into a potential new environmental danger in the region. Thousands of gallons of oil are leaked into the world's oceans every year from big spills, offshore drilling and routine maintenance of rigs, which means many places may be at risk from rising arsenic levels, which could in the long run affect aquatic life, plants and the people who rely on the oceans for their livelihoods."

For their research, the team analysed a mineral called goethite, one of the most abundant ocean sediments in the world, which is an iron bearing oxide.

The team carried out experiments in the laboratory that mimicked conditions in the ocean, to see how the goethite binds to arsenic under natural conditions. They discovered that seawater alters the chemistry of goethite, where low pH levels in the water create a positive change on the surface of goethite sediments, making them attractive to the negatively charged arsenic.

However, the scientists discovered that when they added oil, this created a physical barrier, covering the goethite sediments, which prevented the arsenic in the oil from binding to them. The team also found that the oil changed the chemistry of the sediments, which weakened the attraction between the goethite and arsenic.

In the future, the researchers plan to analyse other minerals such as clays and carbonates that are sediments on the ocean floor. Sediment content varies from ocean to ocean and the researchers will analyse how oil affects their ability to bind to arsenic after a spill.

For further information please contact:
Colin Smith
Press Officer
Imperial College London
Email: cd.smith@imperial.ac.uk
Tel: +44 (0)207 594 6712
Out of hours duty press officer: +44 (0)7803 886 248
Notes to editors:
1."The effect of crude oil on arsenate adsorption on goethite" Water Research journal, Friday 2 July 2010 (published in hardcopy)

The full listing of authors and their affiliations for this paper is as follows:

(1) Wimolporn Wainipee, (1) Dominik J. Weiss, (1) Mark A. Sephton, (1) Barry J. Coles , (1) Richard Court, (2) Catherine Unsworth,
(1) Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK

(2) Natural History Museum, Department of Mineralogy, London, SW7 5BD, UK

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Colin Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>