Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oil spills raise arsenic levels in the ocean, says new research

Oil spills can increase levels of toxic arsenic in the ocean, creating an additional long-term threat to the marine ecosystem, according to research published today in the journal Water Research.

Arsenic is a poisonous chemical element found in minerals and it is present in oil. High levels of arsenic in seawater can enable the toxin to enter the food chain. It can disrupt the photosynthesis process in marine plants and increase the chances of genetic alterations that can cause birth defects and behavioural changes in aquatic life. It can also kill animals such as birds that feed on sea creatures affected by arsenic.

In today's study, a team from Imperial College London has discovered that oil spills can partially block the ocean's natural filtration system and prevent this from cleaning arsenic out of the seawater. The researchers say their study sheds light on a new toxic threat from the Gulf of Mexico oil leak.

Arsenic occurs naturally in the ocean, but sediments on the sea floor filter it out of seawater, which keeps the levels of naturally occurring arsenic low. However, arsenic is also flushed into the ocean in wastewater from oil rigs and from accidental oil spills and leakages from underground oil reservoirs.

In the study, the researchers discovered that oil spills and leakages clog up sediments on the ocean floor with oil, which prevents the sediments from bonding with arsenic and burying it safely underground with subsequent layers of sediment. The scientists say this shutdown of the natural filtration system causes arsenic levels in seawater to rise, which means that it can enter the marine ecosystem, where it becomes more concentrated and poisonous the further it moves up the food chain.

The scientists say their work demonstrates how the chemistry of sediments in the Gulf of Mexico may be affected by the current oil leak. Professor Mark Sephton, from the Department of Earth Science and Engineering at Imperial College London, says:

"We can't accurately measure how much arsenic is in the Gulf at the moment because the spill is ongoing. However, the real danger lies in arsenic's ability to accumulate, which means that each subsequent spill raises the levels of this pollutant in seawater. Our study is a timely reminder that oil spills could create a toxic ticking time bomb, which could threaten the fabric of the marine ecosystem in the future."

Wimolporn Wainipee, postgraduate and lead author of the study from the Department of Earth Science and Engineering at Imperial College London, adds:

"We carried out our study before the leak in the Gulf of Mexico occurred, but it gives us a big insight into a potential new environmental danger in the region. Thousands of gallons of oil are leaked into the world's oceans every year from big spills, offshore drilling and routine maintenance of rigs, which means many places may be at risk from rising arsenic levels, which could in the long run affect aquatic life, plants and the people who rely on the oceans for their livelihoods."

For their research, the team analysed a mineral called goethite, one of the most abundant ocean sediments in the world, which is an iron bearing oxide.

The team carried out experiments in the laboratory that mimicked conditions in the ocean, to see how the goethite binds to arsenic under natural conditions. They discovered that seawater alters the chemistry of goethite, where low pH levels in the water create a positive change on the surface of goethite sediments, making them attractive to the negatively charged arsenic.

However, the scientists discovered that when they added oil, this created a physical barrier, covering the goethite sediments, which prevented the arsenic in the oil from binding to them. The team also found that the oil changed the chemistry of the sediments, which weakened the attraction between the goethite and arsenic.

In the future, the researchers plan to analyse other minerals such as clays and carbonates that are sediments on the ocean floor. Sediment content varies from ocean to ocean and the researchers will analyse how oil affects their ability to bind to arsenic after a spill.

For further information please contact:
Colin Smith
Press Officer
Imperial College London
Tel: +44 (0)207 594 6712
Out of hours duty press officer: +44 (0)7803 886 248
Notes to editors:
1."The effect of crude oil on arsenate adsorption on goethite" Water Research journal, Friday 2 July 2010 (published in hardcopy)

The full listing of authors and their affiliations for this paper is as follows:

(1) Wimolporn Wainipee, (1) Dominik J. Weiss, (1) Mark A. Sephton, (1) Barry J. Coles , (1) Richard Court, (2) Catherine Unsworth,
(1) Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK

(2) Natural History Museum, Department of Mineralogy, London, SW7 5BD, UK

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Colin Smith | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>