Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil palm plantations threaten water quality, Stanford scientists say

01.07.2014

Indonesia pays a price for a lucrative crop used in many household products. Palm plantations damage freshwater streams that supply drinking water to millions of people.

If you've gone grocery shopping lately, you've probably bought palm oil.


Stanford researchers are studying the effects on water quality when land is cleared for oil palm plantations in West Kalimantan, Indonesian Borneo. (Photo: Kimberly Carlson)

Found in thousands of products, from peanut butter and packaged bread to shampoo and shaving cream, palm oil is a booming multibillion-dollar industry. While it isn't always clearly labeled in supermarket staples, the unintended consequences of producing this ubiquitous ingredient have been widely publicized.

The clearing of tropical forests to plant oil palm trees releases massive amounts of carbon dioxide, a greenhouse gas fueling climate change. Converting diverse forest ecosystems to these single-crop "monocultures" degrades or destroys wildlife habitat. Oil palm plantations also have been associated with dangerous and abusive conditions for laborers.

Significantly eroded water quality now joins the list of risks associated with oil palm cultivation, according to new research co-authored by researchers from Stanford University and the University of Minnesota, who warn of threats to freshwater streams that millions ofpeople depend on for drinking water, food and livelihoods. The new study in the Journal of Geophysical Research: Biogeosciences contains surprising findings about the intensity and persistence of these impacts, even in areas fully forested with mature oil palm trees.

Land clearing, plantation management (including fertilizer and pesticide application) and processing of oil palm fruits to make crude palm oil can all send sediment, nutrients and other harmful substances into streams that run through plantations. Vegetation removal along stream banks destroys plant life that stream organisms depend on for sustenance and shade.

"Although we previously documented carbon emissions from land use conversion to oil palm, we were stunned by how these oil palm plantations profoundly alter freshwater ecosystems for decades," said study co-author and team leader Lisa M. Curran, a professor of ecological anthropology at Stanford and a senior fellow at the Stanford Woods Institute for the Environment.

Palm oil epicenter

Indonesia produces almost half of the world's palm oil. Home to the world's third-largest tropical forest, the country is also one of the principal emitters of greenhouse gases, due to the rapid conversion of carbon-rich forests and peatlands to other uses.

From 2000 to 2013, Indonesia's land used for oil palm cultivation more than tripled. About 35 percent of Indonesian Borneo's unprotected lowlands may be cleared for oil palm in coming years, according to previous research by Curran and the study's lead author, Kimberly Carlson, a former Stanford graduate student who is now a postdoctoral scholar at the University of Minnesota's Institute on the Environment.

Curran, Carlson and their colleagues focused on small streams flowing through oil palm plantations, smallholder agriculture and forests in and around Gunung Palung National Park, a federally protected area that Curran was instrumental in establishing in 1990. They found that water temperatures in streams draining recently cleared plantations were almost 4 degrees Celsius (more than 7 degrees Fahrenheit) warmer than forest streams. Sediment concentrations were up to 550 times greater. They also recorded a spike in stream metabolism – the rate at which a stream consumes oxygen and an important measure of a stream's health – during a drought.

Possible solutions

The impact of these land use changes on fisheries, coastal zones and coral reefs – potentially many miles downstream – remains unclear because this study is one of the first to examine the oil palm's effects on freshwater ecosystems. "Local communities are deeply concerned about their freshwater sources. Yet the long-term impact of oil palm plantations on freshwater streams has been completely overlooked until now," Curran said. "We hope this work will highlight these issues and bring a voice to rural communities' concerns that directly affect their livelihoods."

Potential management solutions, according to Carlson and Curran, include maintaining natural vegetative cover next to streams and designing oil palm plantations so that dense road networks do not intersect directly with waterways. These kinds of improved practices are being pioneered by the Roundtable on Sustainable Palm Oil and other organizations that certify palm oil production as sustainable. Yet, Carlson said, "Our findings suggest that converting logged forests and diverse smallholder agricultural lands to oil palm plantations may be almost as harmful to stream ecosystems as clearing intact forests." Very few protections for such non-intact forest ecosystems exist.

According to Curran, extensive land conversion to oil palm plantations could lead to a "perfect storm" combining the crop's environmental effects with those from a massive El Niño-associated drought. (One is predicted this fall.) "This could cause collapse of freshwater ecosystems and significant social and economic hardships in a region," Curran said.

Curran and Carlson's study of oil palm cultivation in Indonesia has been funded with support from the NASA Land-Cover/Land-Use Change program and the John D. and Catherine T. MacArthur Foundation.

 
Contact
Lisa Curran, Stanford University Department of Anthropology: lmcurran@stanford.edu, (203) 606-4513

Kimberly Carlson, University of Minnesota: kimcarlson@gmail.com, (650) 380-3216 (Carlson is unavailable to the media until July 7.)

Terry Nagel, Stanford Woods Institute for the Environment: (650) 498-0607, tnagel@stanford.edu

Dan Stober, Stanford News Service: (650) 721-6965, dstober@stanford.edu

Dan Stober | Eurek Alert!
Further information:
http://news.stanford.edu/pr/2014/pr-palm-oil-water-062614.html

Further reports about: Environment cultivation ecosystems forests freshwater greenhouse plantations tropical

More articles from Ecology, The Environment and Conservation:

nachricht Hunting pressure on forest animals in Africa is on the increase
09.02.2016 | Goethe-Universität Frankfurt am Main

nachricht Man-made underwater sound may have wider ecosystem effects than previously thought
05.02.2016 | University of Southampton

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>