Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oil eating microbes give clue to ancient energy source

Microbes that break down oil and petroleum are more diverse than we thought, suggesting hydrocarbons were used as an energy source early in Earth's history, scientists heard today (Wednesday 10 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

These microbes can change the composition of oil and natural gas and can even control the release of some greenhouse gases. Understanding the role of microbes in consuming hydrocarbons may therefore help us access their role in the natural control of climate change.

"Hydrocarbons like oil and natural gas are made up of carbon and hydrogen, they are among the most abundant substances on Earth," said Dr Friedrich Widdel from the Max Planck Institute for Marine Microbiology in Bremen, Germany. "Even though we use them as fuel sources, they are actually very unreactive at room temperature. This makes them difficult to use as a biological energy source, particularly if there is no oxygen around."

For over 100 years scientists have known that microbes such as bacteria can use hydrocarbons like oil and gas as nutrients. But this process usually requires supplies of oxygen to work at room temperature. "Scientists were always fascinated by the microbes that do this because hydrocarbons are so unreactive," said Dr Widdel. "But it is even more surprising to find an increasing number of microbes that can digest hydrocarbons without needing oxygen."

"The striking diversity of micro-organisms that can break down hydrocarbons may reflect the early appearance of these compounds as nutrients for microbes in Earth's history; Bacteria and archaea living with hydrocarbons therefore may have appeared early in the evolution of life," said Dr. Widdel.

These bacteria and archaea thrive in the hidden underworld of mud and sediments. You can find them in sunken patches of oil under the sea, in oil and gas seeping out underground, and maybe even in oil reservoirs. Their product, hydrogen sulphide, may nourish an unusual world of simple animal life around such seeps via special symbiotic bacteria.

Scientists have identified particular symbioses between archaea and bacteria that are capable of consuming the greenhouse gas methane before it can escape from the ocean's sediments. Others that have been discovered contribute to the bioremediation or cleaning up of petroleum contaminated water supplies in underground aquifers.

"This astounding oxygen-independent digestion of hydrocarbons is only possible via unique, formerly unknown enzymes," said Dr Widdel. "By getting a better understanding of the way these enzymes and microbes are functioning we will also have a better understanding of natural greenhouse gas control and the way hydrocarbons are naturally recycled into carbon dioxide."

Lucy Goodchild | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>