Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil eating microbes give clue to ancient energy source

10.09.2008
Microbes that break down oil and petroleum are more diverse than we thought, suggesting hydrocarbons were used as an energy source early in Earth's history, scientists heard today (Wednesday 10 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

These microbes can change the composition of oil and natural gas and can even control the release of some greenhouse gases. Understanding the role of microbes in consuming hydrocarbons may therefore help us access their role in the natural control of climate change.

"Hydrocarbons like oil and natural gas are made up of carbon and hydrogen, they are among the most abundant substances on Earth," said Dr Friedrich Widdel from the Max Planck Institute for Marine Microbiology in Bremen, Germany. "Even though we use them as fuel sources, they are actually very unreactive at room temperature. This makes them difficult to use as a biological energy source, particularly if there is no oxygen around."

For over 100 years scientists have known that microbes such as bacteria can use hydrocarbons like oil and gas as nutrients. But this process usually requires supplies of oxygen to work at room temperature. "Scientists were always fascinated by the microbes that do this because hydrocarbons are so unreactive," said Dr Widdel. "But it is even more surprising to find an increasing number of microbes that can digest hydrocarbons without needing oxygen."

"The striking diversity of micro-organisms that can break down hydrocarbons may reflect the early appearance of these compounds as nutrients for microbes in Earth's history; Bacteria and archaea living with hydrocarbons therefore may have appeared early in the evolution of life," said Dr. Widdel.

These bacteria and archaea thrive in the hidden underworld of mud and sediments. You can find them in sunken patches of oil under the sea, in oil and gas seeping out underground, and maybe even in oil reservoirs. Their product, hydrogen sulphide, may nourish an unusual world of simple animal life around such seeps via special symbiotic bacteria.

Scientists have identified particular symbioses between archaea and bacteria that are capable of consuming the greenhouse gas methane before it can escape from the ocean's sediments. Others that have been discovered contribute to the bioremediation or cleaning up of petroleum contaminated water supplies in underground aquifers.

"This astounding oxygen-independent digestion of hydrocarbons is only possible via unique, formerly unknown enzymes," said Dr Widdel. "By getting a better understanding of the way these enzymes and microbes are functioning we will also have a better understanding of natural greenhouse gas control and the way hydrocarbons are naturally recycled into carbon dioxide."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>