Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel recycling methods: The fluorescent fingerprint of plastics

22.08.2014

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation of plastics for re-use.

A team of researchers led by Professor Heinz Langhals of LMU’s Department of Chemistry has taken a significant step which promises to markedly expedite the recycling of plastic waste. They have developed a technique which provides for automated recognition of their polymer constituents, thus improving the efficiency of recycling and re-use of the various types of plastic.


Photo: Alterfalter / Fotolia.com

The technique takes advantage of the polymer-specific nature of the intrinsic fluorescence induced by photoexcitation. “Plastics emit fluorescent light when exposed to a brief flash of light, and the emission decays with time in a distinctive pattern.

Thus, their fluorescence lifetimes are highly characteristic for the different types of polymers, and can serve as an identifying fingerprint,” Langhals explains. Details of the new method appear in the latest issue of the journal “Green and Sustainable Chemistry”.

The new technique, which is the subject of a patent application, involves exposing particles of plastic to a brief flash of light which causes the material to fluoresce. Photoelectric sensors then measure the intensity of the light emitted in response to the inducing photoexcitation to determine the dynamics of its decay.

Because the different polymer materials used in the manufacture of plastics display specific fluorescence lifetimes, the form of the decay curve can be used to identify their chemical nature. “With this process, errors in measurement are practically ruled out; for any given material, one will always obtain the same value for the fluorescence half-life, just as in the case of radioactive decay,” says Langhals.

Turning bottles into windcheaters
Unlike metals, the quality of which often suffers during the recycling process itself, recycled plastics can be processed quite efficiently. “Polymers represent an interesting basis for the sustainable cycling of technological materials. The crucial requirement is that the recycled material should be chemically pure. In that case, bottles made of PET, for example, can be relatively easily turned into synthetic fiber for use in waterproof windcheaters,” says Langhals.

The vast majority of technical polymers are processed as thermoplastics, i.e., they are melted at high temperature and the finished article is produced by injecting the molten material into an appropriate mold, where it allowed to set. Reheating of recycled plastic can, however, lead to deleterious alterations in its properties of the material unless the sorted material is of high purity.

Contamination levels as low as 5% are sufficient to significantly reduce the quality of the reformed product. The reason for this “down-cycling” effect is that, as a general rule, polymers tend to be immiscible, as they are chemically incompatible with one another.

Remelting of polymer mixtures therefore often leads to partitioning of the different polymers into distinct domains separated by grain boundaries, which compromises the quality of the final product. For this reason, high-quality plastics are always manufactured exclusively from pristine precursors – never from recycled material.

The new method developed by the LMU team could, however, change this. “The waste problem can only be solved by chemical means, and our process can make a significant contribution to environmental protection, because it makes automated sorting feasible,” says Langhals. Indeed, the use of fluorescence lifetime measurements permits the identification and sorting of up to 1.5 tons of plastic per hour. In other words, the method in its present form already meets the specifications required for its application on an industrial scale.
(Green and Sustainable Chemistry, 2014)                       

Luise Dirscherl | Eurek Alert!
Further information:
http://www.en.uni-muenchen.de/news/newsarchiv/2014/langhals_plastikmuell.html

More articles from Ecology, The Environment and Conservation:

nachricht Saving coral reefs depends more on protecting fish than safeguarding locations
03.09.2015 | Wildlife Conservation Society

nachricht Seabird SOS
01.09.2015 | University of California - Santa Barbara

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015 | Power and Electrical Engineering

Casting of SiSiC: new perspectives for chemical and plant engineering

04.09.2015 | Machine Engineering

Extremely thin ceramic components made possible by extrusion

04.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>