Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


North Atlantic Fish Populations Shifting as Ocean Temperatures Warm

Southern Species like Atlantic Croaker May Become Common in New England Waters

About half of 36 fish stocks in the Northwest Atlantic Ocean, many of them commercially valuable species, have been shifting northward over the last four decades, with some stocks nearly disappearing from U.S. waters as they move farther offshore, according to a new study by NOAA researchers.

Their findings, published in the journal Marine Ecology Progress Series, show the impact of changing coastal and ocean temperatures on fisheries from Cape Hatteras, N.C., to the Canadian border.

Janet Nye, a postdoctoral researcher at NOAA’s Northeast Fisheries Science Center (NEFSC) laboratory in Woods Hole, Mass. and the lead author of the study, looked at annual spring survey data from 1968 to 2007 for stocks ranging from Atlantic cod and haddock to yellowtail and winter flounders, spiny dogfish, Atlantic herring, and less well-known species like blackbelly rosefish. Historic ocean temperature records and long-term processes like the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation dating back to 1850 were also analyzed to put the temperature data into context.

“During the last 40 years, many familiar species have been shifting to the north where ocean waters are cooler, or staying in the same general area but moving into deeper waters than where they traditionally have been found,” Nye said. “They all seem to be adapting to changing temperatures and finding places where their chances of survival as a population are greater.”

Nye and coauthors Jason Link, Jonathan Hare and William Overholtz of NEFSC selected the 36 species to study because they were consistently caught in high numbers in the Center’s annual spring bottom trawl survey. They also represented a wide range of taxonomic groups, and were known to be commercially or ecologically important. NEFSC, headquartered in Woods Hole, conducts annual spring and fall trawl surveys and has the world’s longest time series of standardized fishery population data.

The researchers looked at where the fish were caught and their biomass, or the estimated total weight of the population, in each year of the survey. For each stock they estimated the center of abundance, average depth, the range or area that the stock occupied, and the average temperature at which each stock was found.

They also took into account fishing pressures on the species over time, as well as natural cycles in ocean temperature. Ocean temperatures have increased since the 1960s and 1970s, and the authors found significant changes in species distribution consistent with warming in 24 of the 36 stocks studied.

Ten of the 36 stocks examined had significant range expansion, while 12 had significant range contraction. Changes in a species range can be affected by both temperature changes and fishing pressure, with heavily fished stocks appearing more sensitive to climate change and often showing a larger shift. Seventeen of the 36 stocks occupied increasingly greater depths, and three stocks occupied increasingly shallower waters. However, the temperature at which each stock was found did not change over time, suggesting that fish are moving to remain within their preferred temperature range.

Fish species can respond to changes in ocean temperature in a variety of ways. The stock can move poleward to avoid warmer water temperatures, or move into deeper waters than they have previously been found. If fish cannot change their geographic or depth distribution, there may be changes in growth, reproduction and mortality rates. As a result, the size of the population may increase or decrease depending on the temperature preference of the species. Most species in the study were found to be responding to warming ocean temperatures in one of these ways.

“The fact that we see responses in many species consistent with what you would expect with warming, but in different types of species that have experienced different historical fishing pressure, suggests that we are already witnessing the response of fish to a warming scenario,” Nye said. “The community structure is changing from cool-water to warm-water fish species. These trends will likely continue”.

While consumers will find familiar fish species at their local fish markets for the foreseeable future, fisherman may have to travel farther to catch some species until eventually it will not be economical.

“Consumers in the Northeast, for example, may eventually start seeing less familiar species like Atlantic croaker at local markets and on restaurant menus as southern and Mid-Atlantic species move northward into New England waters,” Nye said. “The fish appear to be adapting to a changing environment, and people will as well over the next few decades.”

The authors say the study has implications beyond the Northeast U.S. “It is another example of the need for an ecosystem-based management approach to our fisheries,” said co-author Jason Link, a fisheries biologist at NEFSC’s Woods Hole laboratory. “Many factors, temperature among them, influence the status of a fish stock, and we need to be aware of all of those factors and consider them in management decisions. Looking at ‘the big picture’ helps put each piece of the puzzle in perspective.”

NOAA Fisheries Service is dedicated to protecting and preserving our nation’s living marine resources and their habitat through scientific research, management and enforcement. NOAA Fisheries Service provides effective stewardship of these resources for the benefit of the nation, supporting coastal communities that depend upon them, and helping to provide safe and healthy seafood to consumers and recreational opportunities for the American public.

NOAA understands and predicts changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and conserves and manages our coastal and marine resources.

Shelley Dawicki | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>