Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-native marine species' spread, impact explained by time since introduction

11.08.2015

The time since the introduction of a non-native marine species best explains its global range, according to new research by an international team of scientists led by University of Georgia ecologist James E. Byers. The study, published in the open access journal Nature Scientific Reports, also contains a warning: The vast majority of marine invaders have not yet finished spreading.

Invasion by non-native species is a worldwide problem that causes billions of dollars of damage annually--more than $120 billion in the U.S. alone, according to a 2005 study cited by the U.S. Fish and Wildlife Service. Preventing future invasions, and mitigating the impacts of those already underway, is a critical goal, Byers said.


The European green crab, Carcinus maenas, is found throughout New England, the Canadian Maritimes, the west coast of North America from California to British Columbia as well as South Africa, New Zealand and Tasmania. It has large impacts on shellfish stocks and can reach high densities. It's been present in New England for almost 200 years.

Credit: D. Hazerli

Effective defenses against species invasions depend on understanding the mechanisms driving them. Control strategies have typically been based on key characteristics of the non-native species and the environments they're invading. For marine invaders, these include traits like mobility, maximum body size and larvae dispersal, and environmental conditions such as salinity, temperature and strength of ocean currents. Control strategies differ depending on which traits or environmental conditions are thought to be the main drivers of invasion.

Despite numerous studies, there has not been scientific consensus on which of these factors are most important.

While attending an invited workshop for experts in marine invasions in Sydney, Australia, in 2012, Byers and his colleagues conceived the idea for a comprehensive analysis to determine which variables were the best predictors of an invader's spread.

"This paper arose because we saw that we could gather data on a large number of species," Byers said. "Data clearing houses have gotten much better at recording species occurrence data."

Byers and his co-authors focused on marine benthic invertebrates--creatures such as crabs and barnacles that live on the ocean floor--that are non-native to the U.S., Australia or New Zealand, because those countries have the most comprehensive records.

They combed through national port surveys, invasive species databases and scientific literature, compiling information on as many of the animals' physical characteristics as possible, as well as environmental conditions of areas outside their native ranges. They also included records of each species' first introduction anywhere in the world. In all, they found 138 species with enough information to include in their analysis.

They then created a model to test which of the variables--species' traits, environmental conditions or time since introduction--did the best job of predicting the global ranges of those non-native species.

Time since introduction proved to be the most useful measurement.

"The fact that the physical variables didn't do such a good job of helping to predict range surprised us," Byers said. "Those variables must be important, but, in hindsight, if species are only occupying a fraction of their total potential non-native range, it does make sense that the physical variables would not yet work well."

He explained that a newly introduced species needs time to fully occupy its potential range in a new region.

"There may be plenty of places suitable for it to live in that novel region, but it just hasn't had time to spread there yet," he said. "Because we don't yet see the fully realized extent, it is hard to characterize a species' tolerances and limits that would otherwise control range size."

Byers said the study's results could nevertheless provide some guidance for managers.

"There is a lot of emphasis in invasion ecology in looking for predictive factors that can tell us what species or what habitats may be most at risk," Byers said. "Our analysis says at a large scale this may be hard to come up with, at least at this point in time before we are able to analyze the fully realized ranges of a sufficient number of invaders. Thus instead, we advocate careful vigilance at sites receiving the greatest number of potential invasive species delivery vectors, like ships with ballast water or imports for aquaculture."

###

The paper is available online at http://www.nature.com/srep/2015/150731/srep12436/full/srep12436.html.

The study's co-authors are Rachel S. Smith, UGA Odum School of Ecology; James M. Pringle, University of New Hampshire; Graeme F. Clark, Paul E. Gribben and Emma L. Johnston, University of New South Wales, Australia; Chad L. Hewitt, University of Waikato, New Zealand; Graeme J. Inglis, National Institute of Water and Atmospheric Research, New Zealand; Gregory M. Ruiz, Smithsonian Environmental Research Center; John J. Stachowicz, University of California, Davis; and Melanie J. Bishop, Macquarie University, Australia.

Funding was provided by Macquarie University, the University of New South Wales, the National Science Foundation, the New Zealand Ministry for Primary Industries and National Institute of Water and Atmospheric Research, the National Sea Grant Program and the Smithsonian Institution.

Media Contact

James E. Byers
jebyers@uga.edu
706-583-0012

 @universityofga

http://www.uga.edu 

James E. Byers | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>