Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NOAA Scientists Link Shifting Atlantic Mackerel DistributionTo Environmental Factors, Changing Climate

Stock Shifts Northeastward, Distributed Over Larger Area

NOAA scientists have found that environmental factors have changed the distribution patterns of Atlantic mackerel (Scomber scombrus), a marine species found in waters from Cape Hatteras to Newfoundland, shifting the stock northeastward and into shallower waters.

Atlantic mackerel migrate great distances on a seasonal basis to feed and spawn, and are sensitive to changes in water temperature. These findings could have significant implications for U.S. commercial and recreational mackerel fisheries that mostly occur during late winter and early spring.

In a paper published online in the American Fisheries Society journal Marine and Coastal Fisheries: Dynamics, Management and Ecosystem Science, researchers from NOAA’s Northeast Fisheries Science Center (NEFSC) reviewed annual changes in the winter and early-spring distribution of the Atlantic mackerel stock on the northeast U.S. continental shelf using spatial and standard statistical analyses of data collected on research trawl surveys.

“Our findings suggest that both the commercial and recreational Atlantic mackerel fisheries in the United States will probably be faced with more variable resource conditions in the future in terms of the winter distribution of the stock,” said study co-author Jon Hare of the Northeast Fisheries Science Center (NEFSC) laboratory in Narragansett, R.I. “The continental shelf is warming, increasing the area over which the stock can be distributed, while at the same time the distribution of the stock is shifting northward.”

Between 1968 and 2008, the overwintering distribution of the Northwest Atlantic stock has shifted about 250 kilometers (roughly 155 miles) to the north and about 50 kilometers (about 30 miles) to the east. The Atlantic mackerel population has also shifted from deeper off-shelf locations to shallower on-shelf areas where more area is now available within the mackerel’s preferred temperature range. Atlantic mackerel prefer water above 5 degrees Celsius (41 degrees Fahrenheit).

The environmentally-driven shift in distribution patterns will probably make it more difficult to find and catch Atlantic mackerel in certain areas in the future. The authors note that the Canadian coastal commercial fishery has continued to thrive while the U.S. commercial mackerel fishery during the winter has declined in recent decades. The change in distribution pattern could also impact other species, since mackerel plays a central role in the food web of the ecosystem. Atlantic mackerel are prey for a wide variety of species; they eat mostly small crustaceans and plankton.

“Atlantic mackerel is one of many species shifting their distribution range as a result of changing oceanographic and environmental patterns,” said Hare. "Those include regional temperature changes from year to year and larger scale environmental forces or climate drivers such as the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO).

Recent studies have indicated a northward shift in distributions of a number of species in this region (Nye et al., 2009), and work by Hare and others in 2010 documents a shift in the distribution and increase in biomass of Atlantic croaker (Micropogonias undulatus) associated with warming. This latest study on Atlantic mackerel by Hare and NOAA Fisheries co-authors William Overholtz (now retired) and Charles Keith of the NEFSC’s Woods Hole Laboratory in Massachusetts indicates that the changes in distribution are related to both interannual variability in temperature and a general warming trend on the Northeast Atlantic continental Shelf.

Despite the current high abundance of the stock, the changes could make it harder for U.S. commercial vessels to locate large schools of mackerel during the winter, when the majority of landings occur, because the fish are dispersed over a larger area within their preferred temperature range. The study also has implications for an early spring recreational Atlantic mackerel fishery in the mid-Atlantic region, which has declined steadily since the 1960s. The trends in recreational landings of Atlantic mackerel are unrelated to fishery regulations or management actions as there were no size limits, bag limits or constraining quotas in effect during this period.

“If the data from the late 1960s are indicative of the southernmost limit in the overwintering population of Atlantic mackerel, the change in the northern and eastern extent of the winter distribution of the stock is relatively large,” Hare said. “Although there has been considerable interannual variability in the stock’s distribution from the late 1960s through the first decade of the 21st century, the Atlantic mackerel stock has progressively moved from the offshore mid-Atlantic region to the southern New England shelf, and is now on the continental shelf more often in winter and much farther north and east of their previous winter positions, moving most recently onto Georges Bank.” .

NOAA Fisheries Service is dedicated to protecting and preserving our nation’s living marine resources and their habitat through scientific research, management and enforcement. NOAA Fisheries Service provides effective stewardship of these resources for the benefit of the nation, supporting coastal communities that depend upon them, and helping to provide safe and healthy seafood to consumers and recreational opportunities for the American public.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Shelley Dawicki | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>