Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA Scientists Link Shifting Atlantic Mackerel DistributionTo Environmental Factors, Changing Climate

16.08.2011
Stock Shifts Northeastward, Distributed Over Larger Area

NOAA scientists have found that environmental factors have changed the distribution patterns of Atlantic mackerel (Scomber scombrus), a marine species found in waters from Cape Hatteras to Newfoundland, shifting the stock northeastward and into shallower waters.

Atlantic mackerel migrate great distances on a seasonal basis to feed and spawn, and are sensitive to changes in water temperature. These findings could have significant implications for U.S. commercial and recreational mackerel fisheries that mostly occur during late winter and early spring.

In a paper published online in the American Fisheries Society journal Marine and Coastal Fisheries: Dynamics, Management and Ecosystem Science, researchers from NOAA’s Northeast Fisheries Science Center (NEFSC) reviewed annual changes in the winter and early-spring distribution of the Atlantic mackerel stock on the northeast U.S. continental shelf using spatial and standard statistical analyses of data collected on research trawl surveys.

“Our findings suggest that both the commercial and recreational Atlantic mackerel fisheries in the United States will probably be faced with more variable resource conditions in the future in terms of the winter distribution of the stock,” said study co-author Jon Hare of the Northeast Fisheries Science Center (NEFSC) laboratory in Narragansett, R.I. “The continental shelf is warming, increasing the area over which the stock can be distributed, while at the same time the distribution of the stock is shifting northward.”

Between 1968 and 2008, the overwintering distribution of the Northwest Atlantic stock has shifted about 250 kilometers (roughly 155 miles) to the north and about 50 kilometers (about 30 miles) to the east. The Atlantic mackerel population has also shifted from deeper off-shelf locations to shallower on-shelf areas where more area is now available within the mackerel’s preferred temperature range. Atlantic mackerel prefer water above 5 degrees Celsius (41 degrees Fahrenheit).

The environmentally-driven shift in distribution patterns will probably make it more difficult to find and catch Atlantic mackerel in certain areas in the future. The authors note that the Canadian coastal commercial fishery has continued to thrive while the U.S. commercial mackerel fishery during the winter has declined in recent decades. The change in distribution pattern could also impact other species, since mackerel plays a central role in the food web of the ecosystem. Atlantic mackerel are prey for a wide variety of species; they eat mostly small crustaceans and plankton.

“Atlantic mackerel is one of many species shifting their distribution range as a result of changing oceanographic and environmental patterns,” said Hare. "Those include regional temperature changes from year to year and larger scale environmental forces or climate drivers such as the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO).

Recent studies have indicated a northward shift in distributions of a number of species in this region (Nye et al., 2009), and work by Hare and others in 2010 documents a shift in the distribution and increase in biomass of Atlantic croaker (Micropogonias undulatus) associated with warming. This latest study on Atlantic mackerel by Hare and NOAA Fisheries co-authors William Overholtz (now retired) and Charles Keith of the NEFSC’s Woods Hole Laboratory in Massachusetts indicates that the changes in distribution are related to both interannual variability in temperature and a general warming trend on the Northeast Atlantic continental Shelf.

Despite the current high abundance of the stock, the changes could make it harder for U.S. commercial vessels to locate large schools of mackerel during the winter, when the majority of landings occur, because the fish are dispersed over a larger area within their preferred temperature range. The study also has implications for an early spring recreational Atlantic mackerel fishery in the mid-Atlantic region, which has declined steadily since the 1960s. The trends in recreational landings of Atlantic mackerel are unrelated to fishery regulations or management actions as there were no size limits, bag limits or constraining quotas in effect during this period.

“If the data from the late 1960s are indicative of the southernmost limit in the overwintering population of Atlantic mackerel, the change in the northern and eastern extent of the winter distribution of the stock is relatively large,” Hare said. “Although there has been considerable interannual variability in the stock’s distribution from the late 1960s through the first decade of the 21st century, the Atlantic mackerel stock has progressively moved from the offshore mid-Atlantic region to the southern New England shelf, and is now on the continental shelf more often in winter and much farther north and east of their previous winter positions, moving most recently onto Georges Bank.” .

NOAA Fisheries Service is dedicated to protecting and preserving our nation’s living marine resources and their habitat through scientific research, management and enforcement. NOAA Fisheries Service provides effective stewardship of these resources for the benefit of the nation, supporting coastal communities that depend upon them, and helping to provide safe and healthy seafood to consumers and recreational opportunities for the American public.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Join us on Facebook, Twitter and our other social media channels.

Shelley Dawicki | EurekAlert!
Further information:
http://www.noaa.gov
http://www.nefsc.noaa.gov/press_release/2011/SciSpot/SS1104

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>