Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA Announces an Experimental Harmful Algal Bloom Forecast Bulletin for Lake Erie

22.09.2009
Predicting harmful algal blooms, or HABs, in the Great Lakes is now a reality as NOAA announces an experimental HAB forecast system in Lake Erie.

HABs produce toxins that may pose a significant risk to human and animal health through water recreation and may form scum that are unsightly and odorous to beach visitors, impacting the coastal economy.

Forecasts depicting current and future locations of blooms, as well as intensity, will alert scientists and managers to possible threats to the Great Lakes beaches and assist in mitigation efforts.

When a harmful bloom in Lake Erie is detected by the experimental system, scientists issue a forecast bulletin to nearby scientists and community managers. The bulletin depicts the HABs’ current location and future movement, as well as categorizes its intensity on a weekly basis.

“With this new forecast, we now have an idea of when and where blooms are predicted to occur and can share products with on-the-ground local managers to reduce the human health threats associated with algal toxins,” said Sonia Joseph, Michigan Sea Grant outreach coordinator for the NOAA Center of Excellence for Great Lakes and Human Health.

“Having a forecast bulletin for Lake Erie will allow us to study the impacts of excess nutrients on beaches and coastal waters, including impacts of harmful algal blooms,” said Jill Lis, environmental health services supervisor for Cuyahoga County, Ohio’s Board of Health.

HABs, such as the blue green algae Microcystis, occur in the waters of almost every coastal state and cost in excess of $82 million annually, including public health, fisheries, and tourism losses. Microcystis blooms are increasing in frequency and duration in the Great Lakes, in part due to the invasive zebra mussel that filters Great Lakes water and removes other algae competitors. These blooms can produce a toxin that can cause skin rashes, liver damage, fish kills, and taste and odor issues in drinking water.

The experimental forecast incorporates data from various ocean-observing systems, including commercial and government satellite imagery obtained by NOAA’s National Ocean Service, coastal forecast modeling and field data by NOAA Great Lakes Environmental Research Laboratory scientists, and reports received from resource managers in the field. The information is then synthesized and interpreted to determine the current and future location and intensity of Microcystis blooms.

“The HAB forecasts for Lake Erie are applying the latest science and technology,” said Rick Stumpf, NOAA oceanographer. “Feedback from the Ohio environmental managers and drinking water utilities will allow us to better forecast these blooms, develop useful tools for our end users, and begin to monitor and forecast blooms in other parts of the country.”

The experimental forecast created for Lake Erie and the state of Ohio was based on the detection system that NOAA’s National Ocean Service designed for Florida's Gulf Coast in 2004. This system will serve as a model for other areas of the U.S. impacted by HABs. The system was jointly funded by NOAA’s Oceans and Human Health Initiative and the Centers for Disease Control and Prevention’s National Center for Environmental Health.

NOAA understands and predicts changes in the Earth’s environment, from the depths of the ocean to the surface of the sun, and conserves and manages our coastal and marine resources.

John Ewald | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>