Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter

31.05.2017

Traffic contributes more to nitrogen oxide emissions in Europe than previously thought. This is the result of a current study carried out by scientists from the University of Innsbruck. The research team headed by Thomas Karl shows that even newer air quality models underestimate traffic related nitrogen oxide pollution by up to a factor of 4. The results of the study are published in the Nature journal Scientific Reports.

In metropolitan areas throughout Europe maximum permissible values of nitrogen oxide are consistently breached. It has been a challenge to determine how much each polluter contributes to the emission output. Until now emission levels were mainly calculated by collecting emission data at laboratory testing facilities and subsequently extrapolating them in models.


Thomas Karl above the roofs of Innsbruck in Austria

Uni Innsbruck

However, the amount of pollutant emissions that vehicles emit on a daily basis depends on numerous factors, for example on individual driving behavior. The recent Diesel scandal showed, for example, that measurements at engine test stands based on the New European Driving Cycle (NEDC) or similar emission testing procedures can be highly uncertain for predicting actual environmental impacts. A large number of new studies have recently been published suggesting that emission levels from test stands have to be adjusted upwards.

Environmental protection and health agencies base their air pollution management on atmospheric models that rely on these experimental data from test facilities. While there have been some doubts about nitrogen oxide emissions for some time, scientists lacked the technology to measure the actual amount of emitted pollutants in a specific area and to determine their overall source strength. A team of physicists headed by Thomas Karl from the Institute of Atmospheric and Cryospheric Sciences at the University of Innsbruck has now implemented a process to do exactly that in the center of Innsbruck, Austria.

Actual nitrogen oxide emissions up to four times higher

The researchers from Innsbruck use a special measurement method – the so-called eddy-covariance method – to continuously monitor the concentration of trace gases in air, which enables them to determine the emissions in an urban area. “We continuously measure the concentration of carbon dioxide, nitrogen oxide and volatile organic compounds at our urban observatory in Innsbruck.

We record 36,000 data points per hour,” explains Karl. Using statistical methods, the scientists infer emissions from these data within a radius of about one kilometer of the measurement location. The analysis of the data of a three months long measurement campaign, which took place in 2015 and is now published in Scientific Reports, shows two main sources for nitrogen oxide concentrations in the Innsbruck air: traffic and residential combustion, with traffic accounting for more than 80 % of the nitrogen oxide emissions in the surroundings of the test station at the University.

The majority of the emissions is caused by Diesel cars. “This result is relatively representative for the whole city,” says Karl who points out the far-reaching relevance of the results: “Even newer atmospheric models are based on emission inventories that underestimate nitrogen oxide emission levels up to a factor of four.” The actual nitrogen oxide emission levels may be four times higher than predicted in the some models.

Tracking down the main polluter

Nitrogen oxide is toxic in higher concentrations and classified as hazardous air pollutant. In addition, it contributes to the development of ground-level ozone. Regulatory thresholds are meant to limit emissions. However, in Innsbruck, for example, the average level of nitrogen oxide is 36 times higher than the new emission regulation standard laid out in the Clean Air Act in the USA. Because of the high levels of nitrogen oxide along the motorways of the Inn valley and the Brenner pass, driving bans and speed limits pursuant to the Austrian Clean Air Protection Act (IG-L) have already been introduced.

The aim of the current study is to determine the main polluters of nitrogen oxide emissions in more detail. The Tyrolean scientists’ future goal is to use their setup to investigate the impact of the motorway in the Lower Inn valley, extend their measurements in Innsbruck to the winter months and study the impact of agricultural activities.

Moreover, air researcher Karl wants to establish longer measurement series’. An important step towards this goal is the establishment of the Innsbruck Atmospheric Observatory (IAO), which is currently being built at the Campus Innrain. It will be used by various research groups at the University of Innsbruck.

Publication: Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe. T. Karl, M. Graus, M. Striednig, C. Lamprecht, A. Hammerle, G. Wohlfahrt, A. Held, L. von der Heyden, M.J. Deventer, A. Krismer, C. Haun, R. Feichter, J. Lee. Scientific Reports 7, 2536 (2017) DOI: 10.1038/s41598-017-02699-9
http://www.nature.com/articles/s41598-017-02699-9

Contact:
Thomas Karl
Institute of Atmospheric and Cryospheric Sciences
University of Innsbruck
Phone: +43 512 507 54455
Email: thomas.karl@uibk.ac.at
Web: http://acinn.uibk.ac.at/

Christian Flatz
Public Relations Office
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at

Weitere Informationen:

http://acinn.uibk.ac.at/research/physics - Atmospheric Physics and Chemistry (Thomas Karl)
http://en.wikipedia.org/wiki/New_European_Driving_Cycle - New European Driving Cycle
http://www.umweltbundesamt.at/en/services/services_pollutants/services_airqualit... - Austrian Ambient Air Quality Protection Act (IG-L)
http://www.epa.gov/laws-regulations/summary-clean-air-act - Clean Air Act

Dr. Christian Flatz | Universität Innsbruck

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>