Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen from Humans Pollutes Remote Lakes for More than a Century

16.12.2011
Nitrogen derived from human activities has polluted lakes throughout the Northern Hemisphere for more than a century and the fingerprint of these changes is evident even in remote lakes located thousands of miles from the nearest city, industrial area or farm.

The findings, published in the journal Science Dec. 16, are based on historical changes in the chemical composition of bottom deposits in 36 lakes using an approach similar to aquatic archeology. More than three quarters of the lakes, ranging from the U.S. Rocky Mountains to northern Europe, showed a distinctive signal of nitrogen released from human activities before the start of the 20th century, said Gordon Holtgrieve, a postdoctoral researcher at University of Washington School of Aquatic and Fishery Sciences and lead author of the report. The UW and a dozen other research institutions contributed to the research.

“When it comes to nitrogen associated with humans, most studies have focused on local and regional effects of pollution and have missed the planetary scale changes,” Holtgrieve said. “Our study is the first large-scale synthesis to demonstrate that biologically-active nitrogen associated with human society is being transported in the atmosphere to the most remote ecosystems on the planet.”

Burning fossil fuel and using agricultural fertilizers are two key ways humans increase the amount of nitrogen entering the atmosphere. Once in the atmosphere, this nitrogen is distributed by atmospheric currents before being deposited back on Earth in rain and snow, often thousands of miles from the source.

“Turns out the world, for nitrogen, is a much smaller place than we’d assumed,” said co-author Daniel Schindler, UW professor of aquatic and fishery sciences and the Harriet Bullitt Chair in conservation.

Although nitrogen is a vital nutrient for life – so much so that farmers apply fertilizers containing it to bolster food crops – too much nitrogen can be harmful. It has been reported that humans already have doubled the rate of nitrogen released to the biosphere since 1950. Humans now contribute more nitrogen to the biosphere than all natural processes combined. When produced in developed areas, this excess nitrogen can lead to smog, acid rain and water pollution.

The effects on remote forests, lands and lakes are largely unknown, Schindler said. An increasing body of evidence, however, shows that the biological composition of microscopic communities in Arctic lakes changed with the arrival of human-derived nitrogen. This global nitrogen pollution may interact with climate change to produce a “double whammy” that could alter remote lakes in ways not seen in the past 10,000 years, Schindler said

Using statistical models to analyze nitrogen characteristics of lake sediments, the authors show that the chemical fingerprint of nitrogen pollution started about 115 years ago, shortly after the Industrial Revolution, and that the rate of chemical changes increased during the last 60 years with industrial production of nitrogen for fertilizers.

“This study also provides an explicit chronology for entry of the Earth into the ‘Anthropocene’ – a new geological era in which global biogeochemical cycles have been fundamentally altered by human activity,” said co-author Peter Leavitt, professor of biology at the University of Regina and the Canada Research Chair in environmental change. “The signal will only get stronger in the future as we double fertilizer use in the next 40 years to feed 3 billion more people.”

The authors conclude that climate, natural sources of nitrogen, and normal chemical processes on land and in water cannot account for the chemical signals they observe.

“Given the broad geographic distribution of our sites – and the range of temperate, alpine and arctic ecosystems – we believe the best explanation is that human-derived nitrogen was deposited from the atmosphere,” Holtgrieve said.

“The global change debate is dominated by discussions of carbon emissions, whether among scientists, politicians or the lay public,” said co-author Alexander Wolfe, professor of earth and atmospheric sciences at the University of Alberta. “However, in a relative sense, the global nitrogen cycle has been far more perturbed by humanity than that of carbon.”

Other co-authors are William Hobbs with Science Museum of Minnesota, Eric Ward with National Marine Fisheries Service, Lynda Bunting with University of Regina, Guangjie Chen with McGill University and Yunnan Normal University, Bruce Finney and Mark Shapley with Idaho State University, Irene Gregory-Eaves with McGill University, Sofia Holmgren with Lund University, Mark Lisac and Patrick Walsh with U.S. Fish and Wildlife Service, Peter Lisi and Lauren Rogers with the University of Washington, Koren Nydick with Mountain Studies Institute, Colorado, Jasmine Saros with University of Maine, and Daniel Selbie with Fisheries and Oceans Canada.

Funding came from the Gordon and Betty Moore Foundation, U.S. Fish and Wildlife Service, Alberta Water Research Institute, Natural Sciences and Engineering Research Council of Canada, the National Science Foundation and Canada Foundation for Innovation.

For more information:
Holtgrieve, gholt@uw.edu, 206-221-5305 (office)
Schindler, deschind@uw.edu, phone interviews can be arranged by email
Wolfe, awolfe@ualberta.ca, 780-492-6073 (office)
Leavitt, peter.leavitt@uregina.ca, 306-585-4253 (office)
William Hobbs, Science Museum of Minnesota, whobbs@smm.org, 651-433-5953
Contact in the European time-zone: Sofia Holmgren, sofia.holmgren@geol.lu.se
Ecosystem ecologist, who is not a co-author, who is willing to comment on research:

Jill Baron, U.S. Geological Survey, 970-491-1968 (office), jill_baron@usgs.gov

Suggested websites
--“Human alteration of the global nitrogen cycle: Causes and consequences”
Issues in Ecology, publication of the Ecological Society of America
Spring 1997 (considered a classic paper on nitrogen deposition)
http://cfpub.epa.gov/watertrain/pdf/issue1.pdf
-- Environmental Protection Agency – “The problem”
http://water.epa.gov/scitech/swguidance/standards/criteria/nutrients/problem.cfm
--Holtgrieve homepage
http://staff.washington.edu/gholt/
--Schindler homepage
http://fish.washington.edu/research/schindlerlab/
--Leavitt homepage
http://www.uregina.ca/biology/index.php?page=faculty/Leavitt
--Wolf homepage
http://faculty.eas.ualberta.ca/wolfe/
--Hobbs homepage
http://www.smm.org/scwrs/people/hobbs
Images available:
Visit EurekAlert section meant for reporters registered with AAAS to view embargoed materials. Or ask Sandra Hines, shines@uw.edu, for the images and map.

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>