Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen from Humans Pollutes Remote Lakes for More than a Century

16.12.2011
Nitrogen derived from human activities has polluted lakes throughout the Northern Hemisphere for more than a century and the fingerprint of these changes is evident even in remote lakes located thousands of miles from the nearest city, industrial area or farm.

The findings, published in the journal Science Dec. 16, are based on historical changes in the chemical composition of bottom deposits in 36 lakes using an approach similar to aquatic archeology. More than three quarters of the lakes, ranging from the U.S. Rocky Mountains to northern Europe, showed a distinctive signal of nitrogen released from human activities before the start of the 20th century, said Gordon Holtgrieve, a postdoctoral researcher at University of Washington School of Aquatic and Fishery Sciences and lead author of the report. The UW and a dozen other research institutions contributed to the research.

“When it comes to nitrogen associated with humans, most studies have focused on local and regional effects of pollution and have missed the planetary scale changes,” Holtgrieve said. “Our study is the first large-scale synthesis to demonstrate that biologically-active nitrogen associated with human society is being transported in the atmosphere to the most remote ecosystems on the planet.”

Burning fossil fuel and using agricultural fertilizers are two key ways humans increase the amount of nitrogen entering the atmosphere. Once in the atmosphere, this nitrogen is distributed by atmospheric currents before being deposited back on Earth in rain and snow, often thousands of miles from the source.

“Turns out the world, for nitrogen, is a much smaller place than we’d assumed,” said co-author Daniel Schindler, UW professor of aquatic and fishery sciences and the Harriet Bullitt Chair in conservation.

Although nitrogen is a vital nutrient for life – so much so that farmers apply fertilizers containing it to bolster food crops – too much nitrogen can be harmful. It has been reported that humans already have doubled the rate of nitrogen released to the biosphere since 1950. Humans now contribute more nitrogen to the biosphere than all natural processes combined. When produced in developed areas, this excess nitrogen can lead to smog, acid rain and water pollution.

The effects on remote forests, lands and lakes are largely unknown, Schindler said. An increasing body of evidence, however, shows that the biological composition of microscopic communities in Arctic lakes changed with the arrival of human-derived nitrogen. This global nitrogen pollution may interact with climate change to produce a “double whammy” that could alter remote lakes in ways not seen in the past 10,000 years, Schindler said

Using statistical models to analyze nitrogen characteristics of lake sediments, the authors show that the chemical fingerprint of nitrogen pollution started about 115 years ago, shortly after the Industrial Revolution, and that the rate of chemical changes increased during the last 60 years with industrial production of nitrogen for fertilizers.

“This study also provides an explicit chronology for entry of the Earth into the ‘Anthropocene’ – a new geological era in which global biogeochemical cycles have been fundamentally altered by human activity,” said co-author Peter Leavitt, professor of biology at the University of Regina and the Canada Research Chair in environmental change. “The signal will only get stronger in the future as we double fertilizer use in the next 40 years to feed 3 billion more people.”

The authors conclude that climate, natural sources of nitrogen, and normal chemical processes on land and in water cannot account for the chemical signals they observe.

“Given the broad geographic distribution of our sites – and the range of temperate, alpine and arctic ecosystems – we believe the best explanation is that human-derived nitrogen was deposited from the atmosphere,” Holtgrieve said.

“The global change debate is dominated by discussions of carbon emissions, whether among scientists, politicians or the lay public,” said co-author Alexander Wolfe, professor of earth and atmospheric sciences at the University of Alberta. “However, in a relative sense, the global nitrogen cycle has been far more perturbed by humanity than that of carbon.”

Other co-authors are William Hobbs with Science Museum of Minnesota, Eric Ward with National Marine Fisheries Service, Lynda Bunting with University of Regina, Guangjie Chen with McGill University and Yunnan Normal University, Bruce Finney and Mark Shapley with Idaho State University, Irene Gregory-Eaves with McGill University, Sofia Holmgren with Lund University, Mark Lisac and Patrick Walsh with U.S. Fish and Wildlife Service, Peter Lisi and Lauren Rogers with the University of Washington, Koren Nydick with Mountain Studies Institute, Colorado, Jasmine Saros with University of Maine, and Daniel Selbie with Fisheries and Oceans Canada.

Funding came from the Gordon and Betty Moore Foundation, U.S. Fish and Wildlife Service, Alberta Water Research Institute, Natural Sciences and Engineering Research Council of Canada, the National Science Foundation and Canada Foundation for Innovation.

For more information:
Holtgrieve, gholt@uw.edu, 206-221-5305 (office)
Schindler, deschind@uw.edu, phone interviews can be arranged by email
Wolfe, awolfe@ualberta.ca, 780-492-6073 (office)
Leavitt, peter.leavitt@uregina.ca, 306-585-4253 (office)
William Hobbs, Science Museum of Minnesota, whobbs@smm.org, 651-433-5953
Contact in the European time-zone: Sofia Holmgren, sofia.holmgren@geol.lu.se
Ecosystem ecologist, who is not a co-author, who is willing to comment on research:

Jill Baron, U.S. Geological Survey, 970-491-1968 (office), jill_baron@usgs.gov

Suggested websites
--“Human alteration of the global nitrogen cycle: Causes and consequences”
Issues in Ecology, publication of the Ecological Society of America
Spring 1997 (considered a classic paper on nitrogen deposition)
http://cfpub.epa.gov/watertrain/pdf/issue1.pdf
-- Environmental Protection Agency – “The problem”
http://water.epa.gov/scitech/swguidance/standards/criteria/nutrients/problem.cfm
--Holtgrieve homepage
http://staff.washington.edu/gholt/
--Schindler homepage
http://fish.washington.edu/research/schindlerlab/
--Leavitt homepage
http://www.uregina.ca/biology/index.php?page=faculty/Leavitt
--Wolf homepage
http://faculty.eas.ualberta.ca/wolfe/
--Hobbs homepage
http://www.smm.org/scwrs/people/hobbs
Images available:
Visit EurekAlert section meant for reporters registered with AAAS to view embargoed materials. Or ask Sandra Hines, shines@uw.edu, for the images and map.

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>