Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the newest diesel engines emit very little greenhouse gas nitrous oxide

11.09.2013
The latest catalytic converters reduce pollution by unusual mechanism

The newest catalytic converters in diesel engines blast away a pollutant from combustion with the help of ammonia. Common in European cars, the engines exhaust harmless nitrogen and water. How they do this hasn't been entirely clear. Now, new research shows that the catalyst attacks its target pollutant in an unusual way, providing insight into how to make the best catalytic converters.


This computer model of a zeolite catalyst shows nitric oxide (ball-and-stick) interacting with a positively charged copper ion (copper ball) at an unexpected angle (red dotted lines).
Photo courtesy of Kwak et al.

Reporting in the journal Angewandte Chemie International Edition, a team of researchers in the Institute for Integrated Catalysis at the Department of Energy's Pacific Northwest National Laboratory led by chemist Janos Szanyi showed that the artificial catalyst works much the same way that similar bacterial enzymes do: by coming at the target from the side rather than head on.

"What I find exciting is the correlation between this artificial catalysis and enzyme catalysis," said Szanyi. "Nature is telling us what to do. Nature's been at it for many millions of years, and it does this beautifully."

Surprise Chemistry

Zeolites are crystalline alumino-silicate minerals that can accommodate metal ions — metal atoms with a slight charge — for catalytic applications. In some catalytic zeolites, the metal ions can break down the pollutant nitric oxide in vehicle emissions. However, the zeolites crumble and clog easily, leading to early failure. In addition, they produce as a byproduct the greenhouse gas nitrous oxide (known to dental patients everywhere as laughing gas).

Recently, researchers have produced a new zeolite that is surprisingly stable and makes very little nitrous oxide from nitric oxide, a chemical that depletes ozone. The zeolite produces mainly water and atmospheric nitrogen — the main component of air — but it needs to be fed ammonia, such as from urea.

Some of the diesel vehicles in Europe are now using this catalyst, and drivers must top off their urea tank as well as their diesel. Called Cu-SSZ-13, the zeolite uses copper as its added metal and has smaller spaces in its alumino-silicate scaffolding compared to other zeolites.

Researchers have assumed that this zeolite would break down nitric oxide in the same way that other zeolites do, following the same series of chemical reaction steps. However, something else must be going on because researchers can make the older zeolites work faster by adding nitrogen dioxide — but Cu-SSZ-13 doesn't respond in the same way. This indicates Cu-SSZ-13 must be taking a different chemical route.

To explore how Cu-SSZ-13 breaks down nitric oxide, the team of researchers investigated the structure of the zeolite in the process of performing the reaction. Using tools designed to find such answers at EMSL, DOE's Environmental Molecular Sciences Laboratory on PNNL's campus, team members first looked at what molecules stuck to the surface of the zeolite.

There they unexpectedly found a charged nitric oxide molecule bound to the copper ions. This molecular combination could only happen one of two ways, the more common of which requires the presence of nitrogen dioxide. Because the researchers saw no nitrogen dioxide, they ruled out that common reaction pathway.

That left the copper metal itself directly hooking up with nitric oxide. In the process, copper borrows one of nitric oxide's electrons, giving nitric oxide a charge. This early theft sets the stage for ammonia to react with the charged nitric oxide in the first of several chemical steps, ultimately pumping out atmospheric nitrogen and water.

Catalysis Imitating Life

Zooming in on the zeolite's structure and reconstructing it with NWChem, software that models molecular chemistry, the team found something unusual. In most zeolite catalysts, nitric oxide is essentially a barbell combining a nitrogen atom and an oxygen atom. The barbell is bound to the metal atom on its head, most often at the nitrogen end of the molecule. However, in Cu-SSZ-13, the copper metal bonded with both the nitrogen and the oxygen halves of the nitric oxide barbell, as if the copper and nitric oxide formed a three-membered ring. Chemists refer to this orientation as "side-on".

"The side-on complex is uncommon in this type of synthetic catalysis," said Szanyi. "But bacteria have an enzyme called nitrite reductase that works this way. This enzyme breaks down nitrites into atmospheric nitrogen."

The chemists also determined that the side-on angle causes the barbell to bend slightly. With no bend, the angle is 180 degrees, but positioned within the zeolite, the angle between the nitrogen and oxygen is about 146 degrees.

The computer reconstruction of Cu-SSZ-13 in action showed the spaces within the aluminum and silicon lattice can only hold one nitric oxide molecule. Other zeolites have almost twice as much space for the nitric oxide to move around.

"The small pore size just fits the reactants and provides precise control," said Szanyi. "This reaction mechanism explains the prior studies — things like why we don't get nitrous oxide."

The researchers are continuing to explore whether this side-on intermediate is common in other catalyst materials and in other reactions.

This work was supported by the Department of Energy Office of Energy Efficiency and Renewable Energy.

Reference: Ja Hun Kwak, Jong H. Lee, Sarah D. Burton, Andrew S. Lipton, Charles H. F. Peden, and Janos Szanyi. A Common Intermediate for N2 Formation in Enzymes and Zeolites: Side-On Cu-Nitrosyl Complexes, Angewandte Chemie International Edition, Aug. 12, 2013, doi: 10.1002/anie.201303498.

Mary Beckman | EurekAlert!
Further information:
http://www.pnnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>