Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Spawning Reefs to Boost Native Fish in St. Clair River

02.07.2014

Construction of two new fish-spawning reefs is about to begin in the St. Clair River northeast of Detroit, the latest chapter in a decade-plus effort to restore native species such as lake sturgeon, walleye and lake whitefish.

The new reefs will be built this summer and fall at two locations on the St. Clair. The goal of the University of Michigan-led project is to boost fish populations by providing river-bottom rock structures suitable for spawning.


A lake sturgeon.

Photo courtesy of Adam Lintz

The crevice-filled rock beds are designed to mimic the natural limestone reefs that existed before the rivers connecting lakes Huron and Erie were dredged and blasted to create shipping canals, and before an increased flow of sediments into the system from agricultural and urban runoff.

Construction of the Harts Light Reef is scheduled to begin this week and is expected to last eight to 12 weeks. The site is adjacent to East China, between St. Clair and Marine City. Work at the Pointe Aux Chenes site, which is between Algonac and Russell Island, will likely begin in September and is expected to last six to eight weeks.

The $3.5 million project is funded by the federal Great Lakes Restoration Initiative and is a follow-up to rock reefs built in the Detroit and St. Clair rivers in 2004, 2008 and 2012. The habitat-restoration project is led by U-M in collaboration with various local, state, federal and private partners.

Over the years, the reef builders have experimented with rocks of different type, shape and size. They discovered that the location of the reef within the river channel is more important than the kind of rock.

Deep, swift-flowing waters seem to work best, tempting the target fish species while keeping the rocks free of silt, algae and mussels. Also, the rocks must be piled deep enough to form crevices that protect eggs from being washed downstream or consumed by predator fish.

The reefs built in the Middle Channel of the St. Clair River in 2012 have attracted spawning lake sturgeon for two consecutive years, an indication that the reef builders have hit upon the right recipe, said project leader Jennifer Read, deputy director of the U-M Water Center at the Graham Sustainability Institute.

“These fish seek out rocky areas in clean, fast-flowing water. Unfortunately, most of that habitat type was removed when the shipping channels were created or has filled with silt from agriculture and construction in the watershed. But we’re gradually restoring it with these reefs,” Read said.

“A long-term goal of this team is to create enough fish-spawning habitat in the river so that we have really robust, self-sustaining populations of lake sturgeon, whitefish and walleye,” she said.

The latest spawning reefs will be made from broken limestone blocks 4 to 8 inches in diameter. That size seems to entice native fish while discouraging invasive species such as the sea lamprey and the round goby.

The limestone is from quarries in Bay Port and Ottawa Lake, Mich., and a crane with a GPS-guided clamshell shovel will precisely position the blocks on the river bottom. The work is being done by Faust Corp., a marine construction firm, along with SmithGroup JJR engineers and architects.

Both sets of reefs will be located in 30- to 50-foot waters and will not interfere with personal boats or freighters and will have no detectable effect on water flow or water levels.

The Harts Light Reef will be 3.8 acres: 1,007 feet long, 165 feet wide and 2 feet tall. The Pointe Aux Chenes Reef will be 1.5 acres: 605 feet long, 108 feet wide and 2 feet tall.

The lake sturgeon is the biggest fish in the Great Lakes, and the St. Clair River is home to the largest remaining population in those inland seas. They are classified as threatened or endangered in seven of the eight Great Lakes states.

Lake sturgeon can grow up to 7 feet in length and can weigh up to 300 pounds. Female sturgeon can live up to 80 years, while males live an average of 55 years.

Taken together, the Detroit River and St. Clair River reef-building projects represent the largest effort to date to restore a primitive, wild fish within a major urban area in the Great Lakes region.

The project’s core science team includes members from the University of Michigan (Water Center, Michigan Sea Grant), the U.S. Geological Survey’s Great Lakes Science Center, the U.S. Fish and Wildlife Service, and the Michigan Department of Natural Resources. The Michigan Wildlife Conservancy and the St. Clair-Detroit River Sturgeon for Tomorrow chapter are also collaborators.

More information: http://www.miseagrant.umich.edu/restoration.

Jim Erickson | newswise
Further information:
http://www.umich.edu

Further reports about: Fish Lake Lakes Reefs Water Whitefish construction habitat lake sturgeon species walleye

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>