Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Shows Humans Have More Impact on Tropical Nitrogen Levels

20.05.2014

A new paper co-written by four University of Montana researchers finds that humans have more than doubled tropical nitrogen inputs.

Benjamin Sullivan, a researcher working with UM College of Forestry and Conservation Professor Cory Cleveland, led the team that looked at the nitrogen cycle in tropical rain forests. Sullivan and his colleagues used a new method to demonstrate that biological nitrogen fixation in tropical rain forests may be less than a quarter of previous estimates.

Nitrogen is an essential nutrient for plant and animal life. It’s required in many basic molecules, like DNA and amino acids. Nitrogen enters the environment either through a microbial process called biological nitrogen fixation or through human activity, such as fertilization and fossil-fuel consumption.

Too much nitrogen, however, leads to dead zones, pollutes air and drinking water, contributes to a number of human illnesses, and can affect ecosystems negatively. That could be a problem, given the high biodiversity of tropical rain forests and their important role in the global carbon cycle and the Earth’s climate.

 “This research fundamentally changes our understanding of the tropical nitrogen cycle,” said Sullivan. “It shows that few ecosystems on Earth have escaped the impact of human activity.”

He notes that human impacts on the nitrogen cycle typically are greatest where biological nitrogen fixation is low and human inputs of nitrogen are high – like in many parts of North America, including Montana.

Past research has assumed that tropical rain forests have high levels of biological nitrogen fixation and that humans add relatively little nitrogen to tropical ecosystems. In fact, by reducing estimates of naturally occurring nitrogen inputs, “this research shows that human impacts on the nitrogen cycle are even bigger than we thought. Preserving human and ecosystem health requires immediate steps to solve this growing problem,” Cleveland said.

Sullivan worked with UM doctoral student Megan Nasto and researcher Bill Smith. Smith provided the spatial data analysis that put Sullivan’s field and lab-tested results into a global context. Co-authors also include UM alumna Sasha Reed at the U.S. Geological Survey, and researchers at the University of Colorado-Boulder and the University of Connecticut.

The research paper, titled “Spatially Robust Estimates of Biological Nitrogen (N) Fixation Imply Substantial Human Alteration of the Tropical N Cycle,” was published in the journal Proceedings of the National Academy of Sciences.

Benjamin Sullivan | Eurek Alert!
Further information:
http://news.umt.edu/2014/05/051914nitr.aspx

Further reports about: Human acids activity amino ecosystem ecosystems estimates fixation forests fossil-fuel microbial nitrogen tropical

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>