Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methods to Calculate Risk of Floods

22.10.2014

University of Adelaide researchers are devising new methods to more accurately estimate long-term flood risk across Australia.

The researchers are examining the possible causes of floods and how they interact with each other. This information is being used to create sophisticated models which will be used by engineers to better calculate flood risks for different locations.

“In the past, engineers have tended to make decisions as though every flood has just a single cause, for example unusually heavy rainfall or an extreme ocean water level,” says Dr Seth Westra, Senior Lecturer in the School of Civil, Environmental and Mining Engineering.

“Multiple causes and how they interact have rarely been considered but, ironically, many big floods that have occurred in Australia have been extremely complex, with many different things happening at the same time.”

For instance, Dr Westra says, the devastating Queensland floods of 2011 superficially appeared to be caused by intense rainfall, but the flood wouldn’t have had been so large if the catchments hadn’t already been waterlogged from a very wet spring.

“Accurate assessment of the risk of floods in any particular area is important for town planning and council zoning and in designing flood protection infrastructure like bridges and levees,” says Dr Westra.

“But properly understanding the risk of flooding means we have to assess the likelihood of these different events coinciding - acting together in a synergistic way to cause an extreme flood. For example do you tend to get big storm surges at the same time as heavy rainfall?

“Even when something has never happened in the past, it’s possible that the elements could align in a different way in the future to cause a flood event. Think of Hurricane Sandy in the US, which was brought about by the combination of an extremely unusual set of conditions to wreak havoc in New York. We need to be able to assess what sorts of floods can possibly occur in the future, even if we haven’t observed or recorded similar events.

“In Australia, this estimation is complicated further by the fact that we don’t have great long-term records of flood risk. We’re a relatively new country and in a lot of catchments there may only be 30 years of good data – so we have to make educated guesses as to what might be possible in the future.”

Climate change is adding another dimension to the difficulty of flood risk estimation. “Under climate change, each risk factor will probably change in the future – but it will be a complex picture, much more nuanced than is often reported,” says Dr Westra.

“Certainly some places will see increased floods, but other locations could even see a reduction in flood risk.”

Media Contact:

Dr Seth Westra
Senior Lecturer
School of Civil, Environment and Mining Engineering
The University of Adelaide
Phone: +61 8 8313 1538
Mobile: +61 (0)414 997 406
seth.westra@adelaide.edu.au

Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | newswise

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>