Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methods to Calculate Risk of Floods

22.10.2014

University of Adelaide researchers are devising new methods to more accurately estimate long-term flood risk across Australia.

The researchers are examining the possible causes of floods and how they interact with each other. This information is being used to create sophisticated models which will be used by engineers to better calculate flood risks for different locations.

“In the past, engineers have tended to make decisions as though every flood has just a single cause, for example unusually heavy rainfall or an extreme ocean water level,” says Dr Seth Westra, Senior Lecturer in the School of Civil, Environmental and Mining Engineering.

“Multiple causes and how they interact have rarely been considered but, ironically, many big floods that have occurred in Australia have been extremely complex, with many different things happening at the same time.”

For instance, Dr Westra says, the devastating Queensland floods of 2011 superficially appeared to be caused by intense rainfall, but the flood wouldn’t have had been so large if the catchments hadn’t already been waterlogged from a very wet spring.

“Accurate assessment of the risk of floods in any particular area is important for town planning and council zoning and in designing flood protection infrastructure like bridges and levees,” says Dr Westra.

“But properly understanding the risk of flooding means we have to assess the likelihood of these different events coinciding - acting together in a synergistic way to cause an extreme flood. For example do you tend to get big storm surges at the same time as heavy rainfall?

“Even when something has never happened in the past, it’s possible that the elements could align in a different way in the future to cause a flood event. Think of Hurricane Sandy in the US, which was brought about by the combination of an extremely unusual set of conditions to wreak havoc in New York. We need to be able to assess what sorts of floods can possibly occur in the future, even if we haven’t observed or recorded similar events.

“In Australia, this estimation is complicated further by the fact that we don’t have great long-term records of flood risk. We’re a relatively new country and in a lot of catchments there may only be 30 years of good data – so we have to make educated guesses as to what might be possible in the future.”

Climate change is adding another dimension to the difficulty of flood risk estimation. “Under climate change, each risk factor will probably change in the future – but it will be a complex picture, much more nuanced than is often reported,” says Dr Westra.

“Certainly some places will see increased floods, but other locations could even see a reduction in flood risk.”

Media Contact:

Dr Seth Westra
Senior Lecturer
School of Civil, Environment and Mining Engineering
The University of Adelaide
Phone: +61 8 8313 1538
Mobile: +61 (0)414 997 406
seth.westra@adelaide.edu.au

Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | newswise

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>