Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New estimates on carbon emissions triggered by 300 years of cropland expansion in Northeast China

30.09.2014

The conversion of forests, grasslands, shrublands and wetlands to cropland over the course of three centuries profoundly changed the surface of the Earth and the carbon cycle of the terrestrial ecosystem in Northeast China.

In a new study published in the Beijing-based journal SCIENCE CHINA Earth Sciences, a team of researchers from Beijing Normal University, Nanjing University of Information Science & Technology, and the Institute of Geographic Sciences and Natural Resources Research of the Chinese Academy of Sciences, present new calculations on carbon emissions triggered by the expansion of cropland in this region between 1680 and 1980.


The image on the left depicts a reconstruction of pre-agriculture land cover, and the chart on the right shows carbon emissions from forest, grassland, wetland, and shrubland.

Credit: ©Science China Press

"Using regional land cover reconstructions from historical records, with a bookkeeping model, we estimated the carbon sink changes caused by historical cropland expansion in Northeast China during the past 300 years," state researchers Li Beibei, Fang Xiuqi, Ye Yu and Zhang Xuezhen.

In a new study titled, "Carbon emissions induced by cropland expansion in Northeast China during the past 300 years," these researchers state that during the three centuries until 1980, approximately 38% of the grassland and 20% of the forest and shrubland were converted to cropland.

"The carbon emission induced by cropland expansion between 1683 and 1980 was 1.06–2.55 Gt C(gigaton of carbon)," they state..

"The primary source of carbon emissions was forest reclamation (taking 60% of the total emissions in the moderate scenario), the secondary source was grassland cultivation (taking 27%), and the tertiary sources were shrubland and wetland reclamation (taking 13%)," they add.

"The carbon emission estimation in this study was lower than those in previous studies," they explain, "because of the improved land use data quality and various types of land use change considered."

These researchers reconstructed land cover during the period 1680-1980 by consulting historical documents including government files, Russian investigations in Northeast China, documents of the Manchurian Railway, and official statistics.

Both deforestation and grasslands reclamation for agricultural development has triggered large carbon emissions into the atmosphere. Land cover across Northeast China experienced dramatic changes during that period because of large-scale migration and agricultural development.

After Manchu warriors seized control of Beijing in 1644, they established the Qing Dynasty but closed off their homeland in northern Manchuria to migration by common Han Chinese citizens.

"The Qing Dynasty government then changed its policy from prohibiting to encouraging Han's migration for agriculture in the second half of the 19th century," state the researchers.

“The Hans’ migration and subsequent land reclamations resulted in a rapid increase of carbon emissions to 0.197 Gt C in 1850–1899, 0.758 Gt C in 1900–1949, and 0.371 Gt C in 1950–1980,” they explain.

From 1683 to 1980, between 35.5×103 and 97.4×103 square kilometers of forest were converted into cropland, along with 93.4×103 to 94.7×103 square kilometers of grassland, 23.1×103 to 61.8×103 square kilometers of shrubland, and 10×103 to 11.1×103 square kilometers of wetland.

Migration and the conversion of forests and grasslands into cultivated land proceeded northward, through what are now called Liaoning Province, Jilin Province, and Heilongjiang Province, from the end of the 1800s onward.

"Since 1900," the co-authors of the new study explain, "carbon emissions from Heilongjiang Province have greatly increased and even exceeded the total emissions of the other two provinces."

"During the 20th century," they add, "the largest increase in cropland occurred in Heilongjiang Province."

The co-authors of the new paper also explain that while previous studies focused mainly on carbon emissions from land use changes in terms of forest ecosystems, their research found that the conversion of non-forest ecosystems likewise played an important role in developing cropland and triggering carbon emissions.

"The carbon loss per unit area of the forest reclamation was larger than that in other, non-forest ecosystems, which caused the estimation in this study to be lower than Houghton et al.'s (2003) and Ge et al.'s (2008a) estimates," they state.

"The estimates of emissions from this study were lower than those from Houghton et al. (2003) and Ge et al. (2008a)," they add, "because this study used higher spatial resolution land use data based on historical documents and included disturbances of non-forest ecosystems such as steppe, shrub, and swamp."

###

This work was supported by the China Global Change Research Program (Grant No. 2010CB950103), the National Natural Science Foundation of China (Grant Nos. 40901099, 40571165), the Fundamental Research Funds for the Central Universities (Grant No. 2009SAP-2), and the Scientific Research Funds of Nanjing University of Information Science & Technology (Grant No. S8112090001).

See the article:

Li B B, Fang X Q, Ye Y, et al. 2014. Carbon emissions induced by cropland expansion in Northeast China during the past 300 years. SCIENCE CHINA: Earth Sciences, 57: 2259–2268, doi: 10.1007/s11430-014-4894-4

http://earth.scichina.com:8080/sciDe/EN/abstract/abstract515324.shtml

http://link.springer.com/article/10.1007%2Fs11430-014-4894-4

SCIENCE CHINA Earth Sciences is produced by Science China Press, a leading publisher of scientific journals in China that operates under the auspices of the Chinese Academy of Sciences. Science China Press presents to the world leading-edge advances made by Chinese scientists across a spectrum of fields. http://www.scichina.com/english/

Fang Xiuqi | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>